Advertisement

Landslides

, Volume 12, Issue 6, pp 1097–1106 | Cite as

Reconstruction of the history of the Palliser Rockslide based on 36Cl terrestrial cosmogenic nuclide dating and debris volume estimations

  • Matthieu SturzeneggerEmail author
  • Doug Stead
  • John Gosse
  • Brent Ward
  • Corey Froese
Original Paper

Abstract

This paper presents the results of a combined study, using cosmogenic 36Cl exposure dating and terrestrial digital photogrammetry of the Palliser Rockslide located in the southeastern Canadian Rocky Mountains. This site is particularly well-suited to demonstrate how this multi-disciplinary approach can be used to differentiate distinct rocksliding events, estimate their volume, and establish their chronology and recurrence interval. Observations suggest that rocksliding has been ongoing since the late Pleistocene deglaciation. Two major rockslide events have been dated at 10.0 ± 1.2 kyr and 7.7 ± 0.8 kyr before present, with failure volumes of 40 and 8 Mm3, respectively. The results have important implications concerning our understanding of the temporal distribution of paraglacial rockslides and rock avalanches; they provide a better understanding of the volumes and failure mechanisms of recurrent failure events; and they represent the first absolute ages of a prehistoric high-magnitude event in the Canadian Rocky Mountains.

Keywords

Palliser Rockslide Canadian Rocky Mountains 36Cl terrestrial cosmogenic nuclide dating Paraglacial rock failure Debris volume 

Notes

Acknowledgments

Funding for the research was provided by the Alberta Geological Survey. The authors thank Véronique Duc, Sylvian Braibant, Roger Studerus, and Song Yan-Hui for their assistance in the field; Guang Yang at DGC and Marc Caffee at PRIME Lab for target preparation and AMS analysis; and two anonymous reviewers for their excellent comments on the manuscript.

Supplementary material

10346_2014_527_MOESM1_ESM.xlsx (20 kb)
ESM 1 (XLSX 20 kb)

References

  1. Adam Technology (2007) 3DM CalibCam and 3DM Analyst, version 2.2b Http://www.adamtech.com.au
  2. Antinao JL, Gosse J (2009) Large rockslides in the southern central Andes of Chile (32–34.5°S): tectonic control and significance for quaternary landscape evolution. Geomorphol 104:117–133CrossRefGoogle Scholar
  3. Ballantyne CK, Stone JO (2003) The Beinn Alligin rock avalanche, NW, Scotland: cosmogenic 10Be dating, interpretation and significance. The Holocene 14(3):448–453CrossRefGoogle Scholar
  4. Ballantyne CK, Stone JO, Fifield LK (1998) Cosmogenic Cl-36 dating of postglacial landsliding at the Storr, Isle of Skye, Scotland. The Holocene 8:247–351CrossRefGoogle Scholar
  5. Blais-Stevens A, Hermanns R, Jermyn C (2011) A 36Cl age determination for Mystery Creek rock avalanche and its implications in the context of hazard assessment, British Columbia, Canada. Landslides 8(4):407–416CrossRefGoogle Scholar
  6. Cruden DM (1976) Major rockslides in the Rockies. Can Geotech J 13:8–20CrossRefGoogle Scholar
  7. Cruden DM (1985) Rock slope movements in the Canadian Cordillera. Can Geotech J 22:528–540CrossRefGoogle Scholar
  8. Cruden DM, Eaton TM (1987) Reconnaissance of rockslide hazards in Kananaskis Country, Alberta. Can Geotech J 24:414–429CrossRefGoogle Scholar
  9. Cruden DM, Hu XQ (1993) Exhaustion and steady state models for predicting landslide hazards in the Canadian Rocky Mountains. Geomorphology 8:279–285CrossRefGoogle Scholar
  10. Dortch JM, Owen LA, Haneberg WC, Caffee MW, Cietsch C, Kamp U (2009) Nature and timing of large landslides in the Himalaya and Transhimalaya of northern India. Quat Sci Rev 28:1037–1054CrossRefGoogle Scholar
  11. El Bedoui S, Guglielmi Y, Lebourg T, Pérez J-L (2009) Deep-seated failure propagation in a fractured rock slope over 10,000 years: The La Clapière slope, the south-eastern French Alps. Geomorphol 105:232–238CrossRefGoogle Scholar
  12. Gardner JS (1980) Frequency, magnitude and spatial distribution of mountain rockfalls and rockslides in the Highwood Pass area, Alberta, Canada. In: Coates DR, Vitek JD (eds) Thresholds in geomorphology. Allen and Unwin, London, pp 267–295Google Scholar
  13. Gardner JS (1982) Alpine mass-wasting in contemporary time: some examples from the Canadian rocky mountains. In: Thorn CE (ed) Space and time in geomorphology. Allen and Unwin, London, pp 171–192Google Scholar
  14. Genevois R, Ghirotti M (2005) The 1963 Vaiont landslide. J Appl Geol 1:41–52Google Scholar
  15. Gosse JC, Phillips FM (2001) Terrestrial in situ cosmogenic nuclides: theory and application. Quat Sci Rev 20:1475–1560CrossRefGoogle Scholar
  16. Hajdas I, Ivy-Ochs S, Pickering R, Preusser F (2008) Recent developments in Quaternary dating methods. Geogr Helv 63:176–180CrossRefGoogle Scholar
  17. Heim A (1932) Bergsturz and Menschenleben. Fretz & Wasmuth, ZürichGoogle Scholar
  18. Hermanns RL, Niedermann S, Ivy-Ochs S, Kubik PW (2004) Rock avalanching into a landslide-dammed lake causing multiple dam failure in Las Conchas valley (NW, Argentina)—evidence from surface exposure dating and stratigraphic analyses. Landslides 1(2):113–122CrossRefGoogle Scholar
  19. Hermanns RL, Redfield TF, Bunkholt HSS, Fischer L, Oppikofer T, Gosse J, Eiken T (2012) Cosmogenic nuclide dating of slow moving rockslides in Norway in order to assess long-term slide velocities. In: Eberhardt E et al (eds) Landslides and engineered slopes: protecting society through improved understanding. Taylor & Francis Group, London, pp 849–854Google Scholar
  20. Hewitt K, Gosse J, Clague J (2011) Rock avalanches and the pace of late Quaternary development of river valleys in the Karakoram Himalaya. GSA Bull 123:1836–1850CrossRefGoogle Scholar
  21. Hippolyte J-C, Bourlès D, Braucher R, Carcaillet J, Léanni L, Arnold M, Aumaire G (2009) Cosmogenic 10Be dating of a sackung and its faulted rock glaciers, in the Alps of Savoy (France). Geomorphol 108:312–320CrossRefGoogle Scholar
  22. InnovMetric Software Inc. (2006) Polyworks Package: IMInspect, version 9.1.8. http://www.innovmetric.com/Manufacturing/home.aspx2006
  23. Ivy-Ochs S, Heuberger H, Kubik PW, Kerschner H, Bonani G, Frank M, Schlüchter C (1998) The age of the Köfels event. Relative 14C and cosmogenic isotope dating of an early Holocene landslide in the Central Alps (Tyrol, Austria). Z Gletch Glazialgeol 34(1):57–68Google Scholar
  24. Ivy-Ochs S, Poschinger A, Synal H-A, Maisch M (2009) Surface exposure dating of the Flims landslide, Graubünden, Switzerland. Geomorphol 103:104–112CrossRefGoogle Scholar
  25. Jaboyedoff M, Baillifard F, Couture R, Locat J, Locat P (2004) Toward preliminary hazard assessment using DEM topographic analysis and simple mechanical modeling by means of sloping local base level. In: Lacerda WA, Ehrlich M, Fontoura AB, Sayão A (eds) Landslides: evaluation and stabilization. Taylor & Francis Group, London, pp 199–205Google Scholar
  26. Jackson LE (1979) Glacial history and stratigraphy of the Alberta portion of the Kananaskis Lakes map area. Can J Earth Sci 17:459–477CrossRefGoogle Scholar
  27. Jarman D, Agliardi F, Crosta G (2011) Megafans and outsize fans from catastrophic slope failures in Alpine glacial troughs: the Malser Haide and the Val Venosta cluster, Italy. In: Jaboyedoff M (Ed) Slope tectonics. Geol Soc London, Special Publications 351, pp 253–277Google Scholar
  28. Larsen IJ, Montgomery DR, Korup O (2010) Landslide erosion controlled by hillslope material. Nat Geosci 3:247–251CrossRefGoogle Scholar
  29. Mathews WH, McTaggart KC (1978) Hope rockslides, British Columbia, Canada. In: Voight B (Ed). Rockslides and Avalanches Elsevier, pp 259–275Google Scholar
  30. McCarthy DP, Smith DJ (1994) Historical glacier activity in the vicinity of Peter Lougheed Provincial Park, Canadian Rocky Mountains. West Geogr 4:94–109Google Scholar
  31. McColl ST (2012) Paraglacial rock slope stability. Geomorphology 153–154:1–16CrossRefGoogle Scholar
  32. McMechan ME (1998) Geology and structure cross section. Peter Lougheed Provincial Park, Alberta Geological Survey of Canada, Map 1920A, scale 1:50000Google Scholar
  33. Menounos B, Osborn G, Clague J, Luckman B (2009) Latest Pleistocene and Holocene glacier fluctuations in western Canada. Quat Sci Rev 28:2049–2074CrossRefGoogle Scholar
  34. Oppikofer T (2009) Detection, analysis and monitoring of slope movements by high-resolution digital elevation models. Thèse de doctorat, Faculté des Géosciences et de l’Environnement Université de Lausanne, Switzerland, 201 ppGoogle Scholar
  35. Oppikofer T, Hermanns RL, Redfield TF, Sepûlveda SA, Duhart P, Bascuñan I (2012) Morphologic description of the Punta Cola rock avalanche and associated minor rockslides caused by the 21 April 2007 Aysén earthquake (Patagonia, southern Chile). Rev Asoc Geol ArgentGoogle Scholar
  36. Osborn G, Gerloff L (1997) Latest Pleistocene and early Holocene fluctuations of glaciers in the Canadian and northern American Rockies. Quat Int 38(39):7–19CrossRefGoogle Scholar
  37. Pedrazzini A, Froese CR, Jaboyedoff M, Hungr O, Humair F (2012) Combining digital elevation model analysis and run-out modeling to characterize hazard posed by a potentially unstable rock slope at Turtle Mountain, Alberta, Canada. Eng Geol 128:76–94CrossRefGoogle Scholar
  38. Plug LJ, Gosse JC, McIntosh JJ, Bigley R (2007) Attenuation of cosmic ray flux in temperate forest. J Geophys Res 112:F02022. doi: 10.1029/2006JF000668 Google Scholar
  39. Prager C, Ivy-Ochs S, Ostermann M, Synal H-A, Patzelt G (2009) Geology and radiometric 14C-, 36Cl- and Th-/U-dating of the Fernpass rockslide (Tyrol, Austria). Geomorphol 103:93–103CrossRefGoogle Scholar
  40. Sartori M, Baillifard F, Jaboyedoff M, Rouiller J-D (2003) Kinematics of the 1991 Randa rockslides (Valais, Switzerland). Nat Hazards Earth Syst Sci 3:423–433CrossRefGoogle Scholar
  41. Schimmelpfennig I, Benedetti L, Finkel R, Pik R, Blard P-H, Bourlès D, Burnard P, Williams A (2009) Source of in-situ 36Cl in basaltic rocks. Implications for calibration of production rates. Quat Geochron 4:441–461CrossRefGoogle Scholar
  42. Smith DJ, McCarthy DP, Colenutt ME (1995) Little Ice Age glacial activity in Peter Lougheed and Elk Lakes Provincial Park, Canadian Rocky Mountains. Can J Earth Sci 32:579–589CrossRefGoogle Scholar
  43. Staiger J, Gosse J, Toracinta R, Oglesby B, Fastook J, Johnson JV (2007) Atmospheric scaling of cosmogenic nuclide production: climate effect. J Geophys Res Solid Earth 112(B2):1978–2012CrossRefGoogle Scholar
  44. Stone JO (2001) Unpublished University of Washington Cosmogenic Nuclide Laboratory method available for download at http://depts.washington.edu/cosmolab/chem.html
  45. Sturzenegger M, Stead D (2009) Quantifying discontinuity orientation and persistence on high mountain rock slopes and large landslides using terrestrial remote sensing techniques. Nat Hazards Earth Syst Sci 9:267–287CrossRefGoogle Scholar
  46. Sturzenegger M, Stead D (2012) The Palliser Rockslide, Canadian Rocky Mountains: characterization and modeling of a stepped failure surface. Geomorphol 138:145–161CrossRefGoogle Scholar
  47. Van Husen D, Ivy-Ochs S, Alfimow V (2007) Mechanism and age of late glacial landslides in Calcareous Alps; the Almtal Upper Austria. Austrian J Earth Sci 100:114–126Google Scholar
  48. Vermeesch P (2007) CosmoCalc: an Excel add-in for cosmogenic nuclide calculations. Geochem Geophys Geosystems 8(8), Q08003CrossRefGoogle Scholar
  49. Welkner D, Eberhardt E, Hermanns RL (2010) Hazard investigation of the Portillo Rock Avalanche site, Central Andes, Chile, using an integrated field mapping and numerical modelling approach. Eng Geol 114:278–297CrossRefGoogle Scholar
  50. Wolter A, Stead D, Clague J (2013) A morphologic characterization of the 1963 Vajont Slide, Italy, using long-range terrestrial photogrammetry. Geomorphol 206:147–164CrossRefGoogle Scholar
  51. Zdanowicz CM, Zielinski GA, Germani MS (1999) Mount Mazama eruption: calendrical age verified and atmospheric impact assessed. Geology 27(7):621–624CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Matthieu Sturzenegger
    • 1
    Email author
  • Doug Stead
    • 2
  • John Gosse
    • 3
  • Brent Ward
    • 2
  • Corey Froese
    • 4
  1. 1.Klohn Crippen Berger Ltd.EdmontonCanada
  2. 2.Department of Earth SciencesSimon Fraser UniversityBurnabyCanada
  3. 3.Department of Earth SciencesDalhousie UniversityHalifaxCanada
  4. 4.Alberta Geological Survey/Energy Resources Conservation BoardEdmontonCanada

Personalised recommendations