Skip to main content

Large Late Pleistocene landslides from the marginal slope of the Flysch Carpathians

Abstract

The gently concave piedmont of the marginal slope of the Flysch Carpathians in the Czech Republic has long been considered to comprise a system of pediments or coalescent alluvial fans. However, within one of the typical sections of this piedmont, large successive landslides with long travel distances of ~2.5 km have been identified through geophysical measurements and the investigation of an extensive artificial exposure. Accelerator mass spectrometry (AMS) radiocarbon dating and pollen analysis demonstrate that the uppermost generations of landslide deposits have originated since ~56 ka BP during the warmer and more humid interpleniglacial conditions of Marine Isotope Stage 3 (MIS 3). The geomorphological evidence for landsliding during MIS 3 has almost completely disappeared from this region due to intensive periglacial processes operating during the Last Glacial Maximum and subsequent fluvial and anthropogenic processes operating during the Holocene. The considerable antiquity of the studied terrestrial landslide bodies is unique within the context of Europe. This study shows the value of re-examining landscape development using new techniques and fresh exposures.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Antinao JL, Gosse J (2009) Large rockslides in the southern Central Andes of Chile (32-34.5°S): tectonic control and significance for post-Miocene landscape evolution. Geomorphol 104:117–133

    Article  Google Scholar 

  2. Antoine P, Rousseau DD, Zöller L, Lang A, Munaut AV, Hatte C, Fontugne M (2001) High-resolution record of the last interglacial-glacial cycle in the Nussloch loess-palaeosol sequences, Upper Rhine Area, Germany. Quat Int 76(77):211–229

    Article  Google Scholar 

  3. Balescu S, Ritz JF, Lamothe M, Auclair M, Todbileg M (2007) Luminescence dating of a gigantic palaeolandslide in the Gobi-Altay mountains, Mongolia. Quat Geochronol 2:290–295

    Article  Google Scholar 

  4. Berglund BE, Ralska-Jasiewiczowa M (1986) Pollen analysis and pollen diagrams. In: Berglund BE (ed) Handbook of Holocene palaeoecology and palaeohydrology. Wiley, Chichester, pp 455–484

    Google Scholar 

  5. Bertran P, Fabre R (2005) Pleistocene cryostructures and landslide at Petit-Bost (southwestern France, 45°N). Geomorphol 71:344–356

    Article  Google Scholar 

  6. Bíl M, Müller I (2008) The origin of shallow landslides in Moravia (Czech Republic) in the spring 2006. Geomorphol 99:246–253

    Article  Google Scholar 

  7. Burda J, Hartvich F, Valenta J, Smítka V, Rybář J (2013) Climate-induced landslide reactivation at the edge of the Most Basin (Czech Republic) - progress towards better landslide prediction. Nat Hazards Earth Syst Sci 13:361–374

    Article  Google Scholar 

  8. Costa CH, González Díaz EF (2007) Age constraints and paleoseismic implication of rock avalanches in the northern Patagonian Andes, Argentina. J S Am Earth Sci 24:48–57

    Article  Google Scholar 

  9. Czudek T (1995) Cryoplanation terraces—a brief review and some remarks. Geogr Ann 77A:95–105

    Article  Google Scholar 

  10. Czudek T (2012) Soft rock pediments in South Moravia, Czech Republic. Neth J Geosci 91:215–222

    Google Scholar 

  11. Danišík M, Pánek T, Matýsek D, Dunkl I, Frisch W (2008) Apatite fission track and (U-Th)/He dating of teschenite intrusions gives time constraints on accretionary processes and development of planation surfaces in the Outer Western Carpathians. Z für Geomorphol, NF Hauptbänd 52:273–289

    Article  Google Scholar 

  12. Davies TRH, Warburton J, Dunning SS, Bubeck AAP (2013) A large landslide event in a post-glacial landscape: rethinking glacial legacy. Earth Surf Process and Landf 38:1261–1268

    Article  Google Scholar 

  13. Demek J, Mackovčin P, Slavík P (2011) Rock pediments and bahada in the Frenštátská brázda Furrow (the Moravian-Silesian Carpathians, Czech Republic). Geomorphol Slovaca et Bohemica 11:42–49

    Google Scholar 

  14. Engel Z, Nývlt D, Křížek M, Treml V, Jankovská V, Lisá L (2010) Sedimentary evidence of landscape and climate history since the end of MIS 3 in the Krkonoše Mountains, Czech Republic. Quat Sci Rev 29:913–927

    Article  Google Scholar 

  15. Engels S, Bohncke SJP, Heiri O, Schaber K, Sirocko F (2008) The lacustrine sediment record of Oberwinkler Maar (Eifel, Germany): chironomid and macro-remain-based inferences of environmental changes during Oxygen Isotope Stage 3. Boreas 37:414–425

    Article  Google Scholar 

  16. French HM (2007) The periglacial environment. Wiley, Chichester

    Book  Google Scholar 

  17. Gutiérrez F, Lucha P, Galve JP (2010) Reconstructing the geochronological evolution of large landslides by means of the trenching technique in the Yesa Reservoir Spanish Pyrenees. Geomorphol 124:124–136

    Article  Google Scholar 

  18. Gutiérrez F, Linares R, Roqué C, Zarroca M, Rosell J, Galve JP, Carbonel D (2012) Investigating gravitational grabens related to lateral spreading and evaporite dissolution subsidence by means of detailed mapping, trenching, and electrical resistivity tomography (Spanish Pyrenees). Lithosphere 4:331–353

    Article  Google Scholar 

  19. Hartvich F, Valenta J (2011) The identification of faults using morphostructural and geophysical methods: a case study from Strašín cave site. Acta Geodyn Geomater 8:425–441

    Google Scholar 

  20. Hartvich F, Valenta J (2013) Tracing an intra-montane fault: an interdisciplinary approach. Surv in Geophys 34:317–347

    Article  Google Scholar 

  21. Hermanns RL, Longva O (2012) Rapid rock-slope failures. In: Clague JJ, Stead D (eds) Landslides (types, mechanisms and modeling). Cambridge University Press, Cambridge, pp 59–70

    Chapter  Google Scholar 

  22. Hradecký J, Pánek T, Břízová E (2004) Geomorfologie a stáří vybraných svahových deformací Slezských Beskyd a Jablunkovské brázdy. Geografie-Sborník ČGS 109:289–303 (in Czech)

    Google Scholar 

  23. Huggel C, Clague JJ, Korup O (2012) Is climate change responsible for changing landslide activity in high mountains? Earth Surf Process and Landf 37:77–91

    Article  Google Scholar 

  24. Klimeš J, Blahůt J (2012) Landslide risk analysis and its application in regional planning: an example from the highlands of the Outer Western Carpathians, Czech Republic. Nat Hazards 64:1779–1803

    Article  Google Scholar 

  25. Krejčí O, Baroň I, Bíl M, Hubatka F, Jurová Z, Kirchner K (2002) Slope movements in the Flysch Carpathians of Eastern Czech Republic triggered by extreme rainfalls in 1997: a case study. Phys and Chem of the Earth 27:1567–1576

    Article  Google Scholar 

  26. Jankovská V, Pokorný P (2008) Forest vegetation on the last full-glacial period in the Western Carpathians (Slovakia and Czech Republic). Preslia 80(3):307–324

    Google Scholar 

  27. Loke MH, Barker RD (1996) Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophys Prospect 44:131–152

    Article  Google Scholar 

  28. Margielewski W (2001) Late Glacial and Holocene climatic changes registered in forms and deposits of the Klaklowo landslide (Beskid Średni Range, Outer Carpathians). Studia Geomorphol Carpatho-Balcanica 35:63–79

    Google Scholar 

  29. Margielewski W (2006) Records of the Late Glacial-Holocene palaeoenvironmental changes in landslide forms and deposits of the Beskid Makowski and Beskid Wyspowy Mts. Area (Polish Outer Carpathians). Folia Quat 76:1–149

    Google Scholar 

  30. Mather AE, Griffiths JS, Stokes M (2003) Anatomy of fossil landslide from the Pleistocene of SE Spain. Geomorphol 50:135–149

    Article  Google Scholar 

  31. McColl ST, Davies TT (2011) Evidence for a rock-avalanche origin for ‘The Hillocks’ “moraine”, Otago, New Zealand. Geomorphol 127:216–224

    Article  Google Scholar 

  32. Menčík E, Adamová M, Dvořák J, Dudek A, Jetel J, Jurková A, Hanzlíková E, Houša V, Peslová H, Rybářová L, Šmíd B, Šebesta J, Tyráček J, Vašíček Z (1983) Geologie Moravskoslezských Beskyd a Podbeskydské pahorkatiny (Geology of the Moravskoslezské Beskydy Mountains and Podbeskydská pahorkatina hilly country). Ústřední Ústav Geologický, Praha (in Czech, with English Summary)

  33. Menčík E, Tyráček J (1985) Přehledná geologická mapa Beskyd a Podbeskydské pahorkatiny v měřítku 1:100 000 (Synoptic geological map of the Beskydy Mountains and Podbeskydská pahorkatina hills at 1:100 000). Ústřední Ústav Geologický, Praha (in Czech)

  34. Mentlík P, Engel Z, Braucher R, Léanni L, Team A (2013) Chronology of Late Weichselian glaciation in the Bohemian Forest in Central Europe. Quat Sci Rev 65:120–128

    Article  Google Scholar 

  35. Milsom J (2003) Field geophysics. Wiley, Chichester

    Google Scholar 

  36. Nichols KK, Bierman PR, Ross Foniri W, Gillespie AR, Caffee M, Finkel R (2006) Dates and rates of arid region geomorphic processes. GSA Today 16:4–11

    Article  Google Scholar 

  37. Members NGRIP (2004) High-resolution record of northern hemisphere climate extending into the last interglacial period. Nature 431:147–151

    Article  Google Scholar 

  38. Nývlt D, Engel Z, Tyráček J (2011) Pleistocene glaciations of Czechia. In: Ehlers J, Gibbard PL, Hughes PD (eds.) Developments in quaternary sciences 15, pp 37–46

  39. Pánek T, Hradecký J, Smolková V, Šilhán K, Minár J, Zernitskaya V (2010) The largest prehistoric landslide in northwestern Slovakia: chronological constraints of the Kykula long-runout landslide and related dammed lakes. Geomorphol 120:233–247

    Article  Google Scholar 

  40. Pánek T, Brázdil R, Klimeš J, Smolková V, Hradecký J, Zahradníček P (2011a) Rainfall-induced landslide event of May 2010 in the eastern part of the Czech Republic. Landslides 8:507–516

    Article  Google Scholar 

  41. Pánek T, Šilhán K, Tábořík P, Hradecký J, Smolková V, Lenart J, Brázdil R, Kašičková L, Pazdur A (2011b) Catastrophic slope failure and its origins: case of the May 2010 Girová Mountain long-runout rockslide (Czech Republic). Geomorphol 130:352–364

    Article  Google Scholar 

  42. Pinto L, Hérail G, Sepúlveda SA, Krop P (2008) A Neogene giant landslide in Tarapaca, northern Chile: a signal of instability of the westernmost Altiplano and palaeoseismicity effects. Geomorphol 102:532–541

    Article  Google Scholar 

  43. Ryb U, Matmon A, Porat N, Katz O (2013) From mass-wasting to slope stabilization—putting constrains on a tectonically induced transitioning slope erosion mode: a case study in the Judea Hills, Israel. Earth Surf Process and Landf 38:551–560

    Article  Google Scholar 

  44. Raška P, Hartvich F, Cajz V, Adamovič J (2013) Structural setting of the Čertovka landslide (Ústí nad Labem, Czech Republic) analysed by morphostructural analysis and electrical resistivity tomography. Geological Quarterly. doi:10.7306/gq.1134

    Google Scholar 

  45. Rybář J, Nemčok A (1968) Landslide investigations in Czechoslovakia. Proc 23rd Int Geol Congress, Sect 1, 183–198

  46. Rybář J, Klimeš J, Novosad S (2011) Mapy náchylnosti k sesouvání ve flyšových horninách Západních Karpat a verifikace jejich spolehlivosti po mimořádných dešťových srážkách v květnu 2010 (Landslide susceptibility maps in flysch rocks of the Western Carpathians and their verification after extreme rainfalls in May 2010). Geotechnika 4:17–27 (in Czech)

    Google Scholar 

  47. Sanhueza-Pino K, Korup O, Hetzel R, Munack H, Weidinger JT, Dunning T, Ormukov C, Kubik PW (2011) Glacial advances constrained by 10Be exposure dating of bedrock landslides, Kyrgyz Tien Shan. Quat Res 76:295–304

    Article  Google Scholar 

  48. Schrott L, Sass O (2008) Application of field geophysics in geomorphology: advances and limitations exemplified by case studies. Geomorphol 93:55–73

    Article  Google Scholar 

  49. Spötl C, Mangini A, Richards DA (2006) Chronology and paleoenvironment of Marine Isotope Stage 3 from two high-elevation speleothems, Austrian Alps. Quat Sci Rev 25:1127–1136

    Article  Google Scholar 

  50. Starkel L (1997) Mass movements during the Holocene: the Carpathian example and the European perspective. Paläoklimaforschung-Palaeoclim Res 19:385–400

    Google Scholar 

  51. Turnbull JM, Davies TRH (2006) A mass movement origin for cirques. Earth Surf Process and Landf 31:1129–1148

    Article  Google Scholar 

  52. Vandenberghe J, Czudek T (2008) Pleistocene cryopediments on variable terrain. Permafr and Periglac Process 19:71–83

    Article  Google Scholar 

  53. Van den Eeckhaut M, Hervás J, Jaedicke C, Malet JP, Montanarella N, Nadim F (2012) Statistical modelling of Europe-wide landslide susceptibility using limited landslide inventory data. Landslides 9:357–369

    Article  Google Scholar 

  54. Van Meerbeeck CJ, Renssen H, Roche DM (2009) How did Marine Isotope Stage 3 and Last Glacial Maximum climates differ? Perspectives from equilibrium simulations. Clim of the Past 5:33–51

    Article  Google Scholar 

  55. Van Meerbeeck CJ, Renssen H, Roche DM, Wohlfarth B, Bohncke SJP, Bos JAA, Engels S, Helmens KF, Sánchez-Goñi MF, Svensson A, Vandenberghe J (2011) The nature of MIS 3 stadial-interstadial transitions in Europe: new insights from model-data comparisons. Quat Sci Rev 30:3618–3637

    Article  Google Scholar 

  56. Žebera K (1955) Ostravské proluviální suché delty. Věstník ÚÚG 30:181–184 (in Czech)

    Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. Jozef Minár and Dr. Pavel Mentlík for fruitful discussions, Veronika Komárková for help during the fieldwork, and Dr. Věra Čulíková for determining the macroremains. We are particularly indebted to Dr. Daniel Nývlt from the Czech Geological Survey for alerting us to the existence of the artificial exposure. The suggestions of four anonymous reviewers substantially improved the quality of this paper. Finally, we would like to express our thanks to Dr. Matthew D. Rowberry for proofreading the text and correcting the English language. This research was supported by the University of Ostrava Foundation (project no. SGS15/PřF/2013) and by CzechGeo/EPOS (project no. LM2010008).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tomáš Pánek.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pánek, T., Hartvich, F., Jankovská, V. et al. Large Late Pleistocene landslides from the marginal slope of the Flysch Carpathians. Landslides 11, 981–992 (2014). https://doi.org/10.1007/s10346-013-0463-8

Download citation

Keywords

  • Fossil landslide
  • Radiocarbon dating
  • Electrical resistivity tomography
  • Pollen analysis
  • Late Pleistocene
  • Marine Isotope Stage 3
  • Flysch Carpathians