, Volume 11, Issue 4, pp 697–709 | Cite as

Spatio-temporal analysis of rockfall pre-failure deformation using Terrestrial LiDAR

  • Manuel Jesús RoyánEmail author
  • Antonio Abellán
  • Michel Jaboyedoff
  • Joan Manuel Vilaplana
  • Jaume Calvet
Original Paper


We present a long-term spatio-temporal analysis of rock slope evolution using a Terrestrial LiDAR aiming to improve our understanding of the link between pre-failure deformation and the spatial prediction of rockfalls. We monitored the pilot study area located at the Puigcercós cliff (Catalonia, Spain) over a period of 1,705 days and detected the deformation of nine different cliff regions together with a high rockfall activity. An exact match was observed between the progressively deformed areas and the regions recently affected by three of the highest magnitude rockfall events, demonstrating a causal relationship between pre-failure deformation and rockfall occurrence. These findings allowed us to make a forward spatial prediction of future failures, hypothesizing a high probability of failure in the six remaining regions. We observed an exponential acceleration of the deformation close to failure, in accordance with tertiary creep theory. However, the temporal analysis of the deformed areas showed a complex and variable behavior, so no exact prediction of the date of failure can yet be made. Our findings have broadened our understanding of the pre-failure behavior of rockfalls and have clear implications for the future implementation of early warning systems.


Laser scanner Monitoring Pre-failure deformation Spatial prediction Rockfall 



The present study was partially supported by the NUTESA (CGL2010-18609, MICINN and FEDER Founds), RISKNAT group (2009GR/520) and Swiss National Foundation (SNF 138015 and 144040) projects. The first author was funded by the DIUE Commission for Universities and Research of the Catalan government through a pre-doctoral grant (FI-DGR2011) and a pre-doctoral research stay grant at Lausanne University (Switzerland; BE-DGR2011). We also acknowledge the technical support of D. Garcia-Sellés in the fieldwork campaigns and of master’s students J. Blanchard, X. Rodriguez and F. Sanchez in data acquisition and alignment during the early stages of the research. We sincerely thank the editor and the three reviewers for their helpful and critical revision of the manuscript.


  1. Abellán A, Jaboyedoff M, Oppikofer T, Vilaplana JM (2009) Detection of millimetric deformation using a terrestrial laser scanner: experiment and application to a rockfall event. Nat Hazards Earth Syst Sci 9:365–372CrossRefGoogle Scholar
  2. Abellán A, Vilaplana JM, Calvet J, Blanchard J (2010) Detection and spatial prediction of rockfalls by means of terrestrial laser scanning monitoring. Geomorphology 119:162–171CrossRefGoogle Scholar
  3. Avian M, Kellerer-Pirklbauer A, Bauer A (2009) LiDAR for monitoring mass movements in permafrost environments at the cirque Hinteres Langtal, Austria, between 2000 and 2008. Nat Hazards Earth Syst Sci 9:1087–1094CrossRefGoogle Scholar
  4. Baldo M, Bicocchi C, Chiocchini U, Giordan D, Lollino G (2009) LiDAR monitoring of mass wasting processes: The Radicofani landslide, Province of Siena, Central Italy. Geomorphology 105:193–201CrossRefGoogle Scholar
  5. Blanchard J, Calvet J, Abellán A, García D, Khazaradze G, Vilaplana JM (2008) Estudio del escarpe del deslizamiento de Puigcercós mediante láser escáner terrestre. Conca de Tremp, Catalunya. Geotemas 10:1389–1392Google Scholar
  6. Chen Y, Medioni G (1992) Object modelling by registration of multiple range images. Image Vis Comput 10:145–155CrossRefGoogle Scholar
  7. Corominas J, Alonso E (1984) Inestabilidad de laderas en el Pirineo catalán. Tipologia y causas. Inestabilidad de laderas en el Pirineo. Ponencias y Comunicaciones. ETSICCP-UPC C.1-C.53.Google Scholar
  8. Crosta GB, Agliardi F (2003) Failure forecast for large rock slides by surface displacement measurements. Can Geotech J 40:176–191CrossRefGoogle Scholar
  9. Cuevas JL (1992) Estratigrafía del “Garumniense” de la Conca de Tremp. Prepirineo de Lérida. Acta Geol Hisp 27:95–108Google Scholar
  10. Dewez T, Gebrayel D, Lhomme D, Robin Y (2009) Quantifying morphological changes of sandy coasts by photogrammetry and cliff coasts by lasergrammetry. La Houille Blanche 1:32–37CrossRefGoogle Scholar
  11. Eberhardt E, Stead D, Coggan JS (2004) Numerical analysis of initiation and progressive failure in natural rock slopes–the 1991 Randa rockslide. Int J Rock Mech Mining Sci 41:69–87CrossRefGoogle Scholar
  12. Fukuzono T (1985) A new method for predicting the failure time of a slope. In: Proc. IVth International Conference and Field Workshop on Landslides, 1985, TokyoGoogle Scholar
  13. Goodman RE, Bray JW (1976) Toppling of rock slopes. Procc. Spec. Conference on Rock Engineering for Foundations and Slopes. ASCE, vol 2Google Scholar
  14. Heckmann T, Bimböse M, Krautblatter M, Haas F, Becht M, Morche D (2012) From geotechnical analysis to quantification and modelling using LiDAR data: a study on rockfall in the Reintal catchment, Bavarian Alps, Germany. Earth Surf. Process. Landforms 37:119–133CrossRefGoogle Scholar
  15. Hoek E, Bray JW (1981) Rock slope engineering. Institution of Mining and MetallurgyGoogle Scholar
  16. Jaboyedoff M, Oppikofer T, Abellán A, Derron MH, Loye A, Metzger R, Pedrazzini A (2012) Use of LIDAR in landslide investigations: a review. Nat Hazards 61(1):5–28CrossRefGoogle Scholar
  17. Lato MJ, Diederichs MS, Hutchinson DJ, Harrap R (2012) Evaluating roadside rockmasses for rockfall hazards using LiDAR data: optimizing data collection and processing protocols. Nat Hazards 60:831–864CrossRefGoogle Scholar
  18. Leroueil MS (2001) Natural slopes and cuts: movement and failure mechanisms. Geotechnique 51:195–244CrossRefGoogle Scholar
  19. Lim M, Petley DN, Rosser NJ, Allison RJ, Long AJ, Pybus D (2006) Combined digital photogrammetry and time-of-flight laser scanning for monitoring cliff evolution. Photogrammetric Rec 20(1):109–129Google Scholar
  20. Lim M, Rosser NJ, Allison RJ, Petley DN (2010) Erosional processes in the hard rock coastal cliffs at Staithes, North Yorkshire. Geomorphology 114:12–21CrossRefGoogle Scholar
  21. Lim M, Rosser NJ, Petley DN, Keen M (2011) Quantifying the controls and influence of tide and wave impacts on coastal rock cliff erosion. J Coast Res 27(1):46–56CrossRefGoogle Scholar
  22. Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P (2004) Landslide inventories and their statistical properties. Earth Surf Process Landforms 29:687–711CrossRefGoogle Scholar
  23. Manetti L, Steinmann G (2007) 3DeMoN ROBOVEC—integration of a new measuring instrument in an existing generic remote monitoring platform. In: 7th International Symposium On Field Measurements In Geomechanics, Boston, MA, USA, pp 24–27Google Scholar
  24. Monserrat O, Crosetto M (2008) Deformation measurement using terrestrial laser scanning data and least squares 3D surface matching. ISPRS J Photogramm Remote Sens 63:142–154CrossRefGoogle Scholar
  25. Noferini L, Pieraccini M, Mecatti D, Macaluso G, Atzeni C, Mantovani M, Marcato G, Pasuto A, Silvano S, Tagliavini F (2007) Using GB-SAR technique to monitor slow moving landslide. Eng Geo 95:88–98CrossRefGoogle Scholar
  26. Nguyen HT, Fernandez-Steeger TM, Wiatr T, Rodrigues D, Azzam R (2011) Use of terrestrial laser scanning for engineering geological applications on volcanic rock slopes – an example from Madeira island (Portugal). Nat Hazards Earth Syst Sci 11:807–817CrossRefGoogle Scholar
  27. Oppikofer T, Jaboyedoff M, Keusen HR (2008) Collapse at the eastern Eiger flank in the Swiss Alps. Nat Geosci 1:531–535CrossRefGoogle Scholar
  28. Oppikofer T, Jaboyedoff M, Blikra L, Derron MH (2009) Characterization and monitoring of the Aknes rockslide using terrestrial laser scanning. Nat Hazards Earth Syst Sci 9:1643–1653CrossRefGoogle Scholar
  29. Pedrazzini A, Oppikofer T, Jaboyedoff M, Guell i Pons M, Chantry R, Stampfli E (2010) Assessment of rockslide and rockfall problems in an active quarry: case study of the Arvel quarry (western Switzerland). In: European rock mechanics symposium (EUROCK 2010), Lausanne, Switzerland. CRC Press, Leiden, pp 593–596Google Scholar
  30. Pedrazzini A, Abellán A, Jaboyedoff M, Oppikofer T (2011) Monitoring and failure mechanism interpretation of an unstable slope in Southern Switzerland based on terrestrial laser scanner. 14th Pan-American Conference on Soil Mechanics and Geotechnical Engineering, Toronto, CanadaGoogle Scholar
  31. Pesci A, Teza G, Casula G, Loddo F, De Martino P, Dolce M, Obrizzo F, Pingue F (2011) Multitemporal laser scanner-based observation of the Mt. Vesuvius cráter: Characterization of overall geometry and recognition of landslide events. ISPRS J Photogramm Remote Sens 66:327–336CrossRefGoogle Scholar
  32. Petrie G, Toth CK (2008) Introduction to laser ranging, profiling and scanning. In: Shan J, Toth CK (eds) Topographic Laser Ranging and Scanning: Principles and Processing. CRC Press / Taylor & Francis, London, pp 1–28Google Scholar
  33. Prokop A, Panholzer H (2009) Assessing the capability of terrestrial laser scanning for monitoring slow moving landslides. Nat Hazards Earth Syst Sci 9:1921–1928CrossRefGoogle Scholar
  34. Pujalte V, Schmitz B (2005) Revisión de la estratigrafía del Grupo Tremp (“Garumniense”, Cuenca de Tremp-Graus, Pirineos meridionales). Geogaceta 38:79–82Google Scholar
  35. Ravanel L, Allignol F, Deline P, Gruber S, Ravello M (2010) Rock falls in the Mont Blanc Massif in 2007 and 2008. Landslides 7:493–501CrossRefGoogle Scholar
  36. Rodriguez X, Abellán A, Calvet J, Vilaplana JM (2009) Estudio de la influencia de la litología en el fenómeno de caída de bloques mediante láser escáner terrestre. Puigcercós, Pallars Jussà. In: Alonso E, Corominas J, Hürlimann M (eds) Proceedings of VII Simposio Nacional sobre Taludes y Laderas Inestables. Barcelona, SpainGoogle Scholar
  37. Rose ND, Hungr O (2007) Forecasting potential rock slope failure in open pit mines using the inverse-velocity method. Int J Rock Mech Min Sci 44:308–320CrossRefGoogle Scholar
  38. Rosser NJ, Petley DN, Lim M, Dunning SA, Allison RJ (2005) Terrestrial laser scanning for monitoring the process of hard rock coastal cliff erosion. Q J Eng Geol Hydrogeol 38:363–375CrossRefGoogle Scholar
  39. Rosser NJ, Lim N, Petley DN, Dunning S, Allison RJ (2007) Patterns of precursory rockfall prior to slope failure. J Geophys Res 112, F04014Google Scholar
  40. Rosser NJ, Petley DN (2008) Monitoring and modeling of slope movement on rock cliffs prior to failure. In: Chen Z, Zhang J, Li Z, Wu F, Ho K (eds) Landslides and Engineered Slopes. From the Past to the Future. Proceedings of the 10th International Symposium on Landslides and Engineered Slopes, Xi'an, China.Google Scholar
  41. Saito M (1969) Forecasting time of slope failure by tertiary creep. Proc 7th Int Conference Soil Mech Found Eng 2:677–683Google Scholar
  42. Stock GM, Martel SJ, Collins BD, Harp EL (2012) Progressive failure of sheeted rock slopes: the 2009–2010 Rhombus Wall rock falls in Yosemite Valley, California, USA. Earth Surf Process Landforms 37:546–561CrossRefGoogle Scholar
  43. Terzaghi K (1950) Mechanism of landslides. In: Paige S (ed) Application of Geology to Engineering Practice (Berkeley Volume). Geological Society of America, Washington D.C, pp 83–123Google Scholar
  44. Teza G, Galgaro A, Zaltron N, Genevois R (2007) Terrestrial laser scanner to detect landslide displacement fields: a new approach. Int J Remote Sens 28:3425–3446CrossRefGoogle Scholar
  45. Teza G, Pesci A, Genevois R, Galgaro A (2008) Characterization of landslide ground surface kinematics from terrestrial laser scanning and strain field computation. Geomorphology 97:424–437CrossRefGoogle Scholar
  46. Travelletti J, Oppikofer T, Delacourt C, Malet J, Jaboyedoff M (2008) Monitoring landslide displacements during a controlled rain experiment using a long-range terrestrial laser scanning (TLS). Int Archi Photogramm Remote Sens 37(B5):485–490Google Scholar
  47. Tonini M, Abellán A (2013). Rockfall detection from LiDAR point clouds: a clustering approach using R. J Spat Inf Sci (in press)Google Scholar
  48. Vidal LM (1881) Nota acerca de los hundimientos ocurridos en la Cuenca de Tremp (Lérida) en Enero de 1881. Boletin de la Comisión del Mapa Geológico de España VIII:113–129Google Scholar
  49. Viero A, Teza G, Massironi M, Jaboyedoff M, Galgaro A (2010) Laser scanning-based recognition of rotational movements on a deep seated 2 gravitational instability: The Cinque Torri case (North-Eastern Italian Alps). Geomorphology 122:191–204CrossRefGoogle Scholar
  50. Voight B (1989) A relation to describe rate-dependent material failure. Science 243:200–203CrossRefGoogle Scholar
  51. Zimmer VL, Collins BD, Stock GM, Sitar N (2012) Rock fall dynamics and deposition: an integrated analysis of the 2009 Ahwiyah Point rock fall, Yosemite National Park, USA. Earth Surf Process Landforms 37:680–691CrossRefGoogle Scholar
  52. Zvelebill J, Moser M (2001) Monitoring based time-prediction of rock falls: three casehistories. Phys Chem Earth (B) 26:159–167CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Manuel Jesús Royán
    • 1
    Email author
  • Antonio Abellán
    • 1
    • 2
  • Michel Jaboyedoff
    • 2
  • Joan Manuel Vilaplana
    • 1
  • Jaume Calvet
    • 1
  1. 1.RISKNAT Group, GEOMODELS, Departament de Geodinàmica i Geofísica, Facultat de GeologiaUniversitat de BarcelonaBarcelonaSpain
  2. 2.Centre de Recherches en Environnement Terrestre (CRET), Faculté des Géosciences et de l’EnvironnementUniversité de LausanneLausanneSwitzerland

Personalised recommendations