Skip to main content

2D viscoplastic finite element modelling of slow landslides: the Portalet case study (Spain)

Abstract

This paper proposes a hydro-geomechanical finite element model to reproduce the kinematic behaviour of large slow landslides. The interaction between solid skeleton and pore fluids is modelled with a time dependent up w formulation and a groundwater model that takes into account recorded daily rainfall intensity. A viscoplastic constitutive model based on Perzyna’s theory is applied to reproduce soil viscous behaviour and the delayed creep deformation. The proposed model is applied to Portalet landslide (Central Spanish Pyrenees). This is an active paleo-landslide that has been reactivated by the construction of a parking area at the toe of the slope. The stability analysis reveals that, after the constructive solutions were undertaken, the slope is in a limit equilibrium situation. Nevertheless, time-dependent analysis reproduces the nearly constant strain rate (secondary creep) and the acceleration/deceleration of the moving mass due to hydrological changes. Overall, the model reproduces a 2-m displacement in the past 8  years that coincides with in situ monitoring data. The proposed model is useful for short- and mid-term predictions of secondary creep. However, long-time predictions remain uncertain, stability depends strongly on the position of the water table depth and new failures during tertiary creep due to soil temporal microstructural degradation are difficult to calibrate.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. Abbo AJ, Sloan SW (1995) A smooth hyperbolic approximation to the Mohr–Coulomb yield criterion. Comput Struct 54(3):427–441

    Article  Google Scholar 

  2. Álvarez-Fernández MI, González-Nicieza C (2011) Ensayos de hincamiento con cilindro hidráulico. Technical Report for Instituto Geológico y Minero de España. Control Remoto Sudoe Doris Project (in Spanish)

  3. ARCO TECNOS SA (2010) Sondeos en alrededores de la estación de Formigal (Huesca). Technical Report for Instituto Geológico y Minero de España. Control Remoto SudoedorisProject (in Spanish)

  4. Bixel F, Muller J, Roger P (1985) Carte géologique du Pic du Midi d’Ossau et haut bassin du río Gállego, 1:25.000. Institut de Géodynamique, Université de Bordeaux, Bordeaux

    Google Scholar 

  5. Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Shuster RL (eds) Landslides: investigation and mitigation. Transportation Research Board, National Research Council, Special Report 247. National Academy Press, Washington, pp 36–75

    Google Scholar 

  6. Dawson EM, Roth WH, Drescher A (1999) Slope stability analysis by strength reduction. Geotechnique 49(6):835–840

    Article  Google Scholar 

  7. De Souza Neto EA, Peric D, Owen DRJ (2008) Computational methods for plasticity: theory and applications. Wiley, Chichester

    Book  Google Scholar 

  8. Desai CS, Samtani NC, Vulliet L (1995) Constitutive modeling and analysis of creeping slopes. J Geotech Eng, ASCE 121(1):43–56

    Article  Google Scholar 

  9. Dounias GT, Potts DM, Vaughan PR (1988) Finite element analysis of progressive failure: two case studies. Comput Geotech 6:155–175

    Article  Google Scholar 

  10. Federico A, Popescu M, Fidelibus C and Interno G (2004) On the prediction of the time of occurrence of a slope failure: a review. In: Proceedings 9th International Symposium on Landslides, Rio de Janeiro, Taylor and Francis, London, vol. 2, pp 979–983

  11. Fell R, Hungr O, Leroueil S and Riemer W (2000) Keynote Lecture-Geotechnical engineering of the stability of natural slopes, and cuts and fills in soil, GeoEng 2000, Vol.1, Invited Papers, Technomic Publishing, Lancaster, pp.21–120

  12. Fernández-Merodo JA, Herrera G, Mira P, Mulas J, Pastor M, Noferini L, Mecatti D andLuzi G(2008) Modelling the Portalet landslide mobility (Formigal, Spain). iEMSs 2008: International Congress on Environmental Modelling and Software. Sànchez-Marrè M, Béjar J, Comas J, Rizzoli A and Guariso G (eds) International Environmental Modelling and Software Society (iEMSs)

  13. Fernandez-Merodo JA (2001) Une approche à la modélisation des glissements et des effondrements de terrains: Initiation et propagation. Thèse de l’École Centrale Paris, no 2001–33 (in French)

  14. François B, Tacher L, Bonnard C, Laloui L, Triguero V (2007) Numerical modelling of the hydrogeological and geomechanical behaviour of a large slope movement: the Triesenberg landslide (Liechtenstein). Can Geotech J 44:840–857

    Article  Google Scholar 

  15. García Ruiz JM, Chueca J, Julián A (2004) Los movimientos en masa del Alto Gállego. In: Peña JL Longares L.A, Sánchez M (eds) Geografía Física de Aragón. Aspectos Generales y Temáticos, pp. 142–152.

  16. Herrera G, Fernández-Merodo JA, Mulas J, Pastor M, Luzi G, Monserrat O (2009) A landslide forecasting model using ground based SAR data: The Portalet case study. Eng Geol 105:220–230

    Article  Google Scholar 

  17. Herrera G, Notti D, García-Davalillo JC, Mora O, Cooksley G, Sánchez M, Arnaud A, Crosetto M (2011) Analysis with C-and X-band satellite SAR data of the Portalet landslide area. Landslides 8:195–206

    Article  Google Scholar 

  18. Leroueil S, Locat J, Vaunat J, Picarelli L and Faure R (1996) Geotechnical characterization of slopemovements. In: Senneset K (ed) Proceedings of the Seventh International Symposium on Landslides, Trondheim, Norway, Balkema, Rotterdam, vol 1, pp.53–74

  19. Mira P (2001) Análisis por elementos finitos de problemas de rotura de geomateriales. Tesis Doctoral de la ETS de Ingenieros de Caminos, Canales y Puertos. Universidad Politécnica de Madrid (in Spanish)

  20. Ortiz M, Popov EP (1985) Accuracy and stability of integration algorithms for elastoplastic constitutive relations. Int J Numer Methods Eng 9:1561–1576

    Article  Google Scholar 

  21. Oviedo University (2011) Método y sistema para la realización de ensayos in situ y caracterización de terrenos heterogéneos o macizos rocosos intensamente fracturados. Spanish patent no ES-2351498-A1 (in Spanish). http://www.oepm.es/pdf/ES/0000/000/02/35/14/ES-2351498_A1.pdf. Accessed 27 Sept 2012

  22. Owen DRJ, Hinton E (1986) Finite elements in plasticity. Pineridge, Swansea

    Google Scholar 

  23. Perzyna P (1966) Fundamental problems in viscoplasticity. Rec Adv Appl Mech 9:243–377

    Google Scholar 

  24. Simo JC, Taylor RL (1985) Consistent tangent operators for rate independent elastoplasticity. Comput Methods Appl Mech Eng 48:101–118

    Article  Google Scholar 

  25. Tacher L, Bonnard C, Laloui L, Parriaux A (2005) Modelling the behaviour of a large landslide with respect to hydrogeological and geomechanical parameter heterogeneity. Landslides 2(1):3–14

    Article  Google Scholar 

  26. Troncone A (2005) Numerical analysis of a landslide in soils with strain-softening behaviour. Geotechnique 55(8):585–596

    Article  Google Scholar 

  27. Van Asch TWJ, Van Beek LPH, Bogaard TA (2007) Problems in predicting the mobility of slow-moving landslides. Eng Geol 91:46–55

    Article  Google Scholar 

  28. Varnes DJ (1978) Slope movement types and processes. In: Landslides, analysis and control. National Academy of Sciences, Nat. Res. Cou, Washington, Special Rep. vol 176, pp.11–33

  29. Vulliet L (2000) Natural slopes in slow movement. In: Zaman M, Booker JR, Gioda G (eds) Modelling in geomechanics. Wiley, Chichester, pp 654–676

    Google Scholar 

  30. Wang WM, Sluys LJ, de Borst R (1997) Viscoplasticity for instabilities due to strain softening and strain-rate softening. Int J Num Meth Eng 40:3839–3864

    Article  Google Scholar 

  31. Zienkiewicz OC, Shiomi T (1984) Dynamic behaviour of saturated porous media: the generalised biot formulation and its numerical solution. Int J Num Anal Meth Geomech 8:71–96

    Article  Google Scholar 

  32. Zienkiewicz OC, Chan AHC, Pastor M, Shrefler BA, Shiomi T (1999) Computational geomechanics with special reference to earthquake engineering. Wiley, Chichester

    Google Scholar 

  33. Zienkiewicz OC, Taylor R (2000) The finite element method, 5th edn. Butterworth-Heinemann, Oxford

    Google Scholar 

Download references

Acknowledgements

This work has been partially funded by the Terrafirma Global Monitoring for Environment and Security program from ESA, the project DO-SMS (SUDOE INTERREG IV B), the DORIS Project “Ground Deformation Risks Scenarios: an Advanced Assessment Service” (EU-FP7-SPACE-2009-1n 242212) and the Project SAFELAND “Living with landslide risk in Europe: Assessment, effects of global change and risk management strategies” (EU-FP7-ENV-2008-1 n 226479).

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. A. Fernández-Merodo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fernández-Merodo, J.A., García-Davalillo, J.C., Herrera, G. et al. 2D viscoplastic finite element modelling of slow landslides: the Portalet case study (Spain). Landslides 11, 29–42 (2014). https://doi.org/10.1007/s10346-012-0370-4

Download citation

Keywords

  • Slow landslides
  • Viscoplasticity
  • Creep
  • Biot theory
  • Finite elements