, Volume 9, Issue 3, pp 315–334 | Cite as

Numerical modeling of debris avalanche propagation from collapse of volcanic edifices

  • Rosanna Sosio
  • Giovanni B. Crosta
  • Oldrich Hungr
Original Paper


Debris avalanches produced from the collapse of volcanic edifices are destructive events that involve volumes up to two orders of magnitude larger (cubic kilometer) than most non-volcanic rock and debris avalanches. We replicate the motion and spreading of several volcanic collapses by means of a depth-averaged quasi-3D numerical code. The model assumes a frictional internal rheology and a variable basal rheology (i.e frictional, Voellmy and plastic). We back analyzed seven case-studies against observations reported in the literature to provide a set of calibrated cases. The ASTER and SRTM satellite-derived digital elevation models were used as topographic data. The numerical model captures the main features of the propagation process, including travel distance, lateral spreading and run up. At varying triggering factors and material characteristics the best fitting parameters span in a narrow interval and differ from those typical of non-volcanic rock and debris avalanches. The bulk basal friction angles (the sole parameter required in the frictional rheology) range within 3° and 7.5° whereas typical values for non-volcanic debris avalanches vary from 11° to 31°. The consistency of the back analyzed parameters is encouraging for a possible use of the model in the perspective of hazard mapping. The reconstruction of the pre-event topography is critical, and it is associated to large uncertainty. The quality of the terrain data, more than the resolution of the DEMs used, is relevant for the modeling. Resampling the original square grid to larger cell sizes determines a low increase in the back analyzed rheological parameters, as a result of the lower roughness of the terrain.


Volcanic collapses Debris avalanches Numerical modeling Back analysis Hazard mapping Prediction Rheology 



The authors wish to thank K. Kelfoun, L. Capra, and T. Shea for their suggestions and critical review of the paper. The paper benefits from the comments of two anonymous reviewers.


  1. Aguila LG, Newhall CG, Miller CD, Listanco EL (1986) Reconnaissance geology of a large debris avalanche from Iriga volcano, Philippines. Philipp J Volcanol 3:54–72Google Scholar
  2. Belousov A, Belousova M, Voight B (1999) Multiple edifice failures, debris avalanches and associated eruptions in the Holocene history of Shiveluch volcano, Kamchatka, Russia. Bull Volcanol 61:324–342CrossRefGoogle Scholar
  3. Bursik M, Patra A, Pitman EB, Nichita C, Macias JL, Saucedo R, Girina O (2005) Advances in studies of dense volcanic granular flows. Rep Prog Phys 68(2):271–301CrossRefGoogle Scholar
  4. Capra L, Norini G, Groppelli G, Macías JL, Arce JL (2008) Volcanic hazard zonation of Nevado de Toluca volcano. J Volcanol Geotherm Res 176:469–484CrossRefGoogle Scholar
  5. Chen H, Lee CF (2000) Numerical simulation of debris flows. Can Geotech J 37(1):146–160CrossRefGoogle Scholar
  6. Chen H, Lee CF (2003) A dynamic model for rainfall-induced landslides on natural slopes. Geomorphology 51:269–288CrossRefGoogle Scholar
  7. Clavero J, Sparks RSJ, Huppert H, Dade B (2002) Geological constraints on the emplacement mechanism of the Parinacota debris avalanche, Northern Chile. Bull Volcanol 64:40–54CrossRefGoogle Scholar
  8. Crosta GB, Chen H, Lee CF (2004) Replay of the 1987 Val Pola landslide, Italian alps. Geomorphology 60(1–2):127–146CrossRefGoogle Scholar
  9. Crosta GB, Frattini P, Fusi N (2007) Fragmentation in the Val Pola rock avalanche, Italian alps. J Geo Res Earth Surf. doi: 10.1029/2005JF000455
  10. Crosta GB, Imposimato S, Roddeman D (2009) Numerical modelling of entrainment/deposition in rock and debris-avalanches. Eng Geol 109(1–2):135–145CrossRefGoogle Scholar
  11. Dufresne A, Salinas S, Siebe C (2010) Substrate deformation associated with the Jocotitlán edifice collapse and debris avalanche deposit. Central México. J Volcanol Geotherm Res 197(1–4):133–148. doi: 10.1016/j.jvolgeores.2010.02.019 CrossRefGoogle Scholar
  12. Francis PW, Gardeweg M, Ramirez CF, Rothery DA (1985) Catastrophic debris avalanche deposit of Socompa volcano, northern Chile. Geology 13:600–603CrossRefGoogle Scholar
  13. Glicken H (1998) Rockslide-debris avalanche of May 18, 1980, Mount St. Helens volcano, Washington. U S Geol Surv Open-File Report 96–677Google Scholar
  14. Hayashi JN, Self S (1992) A comparison of pyroclastic flow and debris avalanche mobility. J Geophys Res 97:9063–9071CrossRefGoogle Scholar
  15. Heinrich P, Boudon G, Komorowski J-C, Sparks RSJ, Herd R, Voight B (2001) Numerical simulation of the December 1997 debris avalanche in Montserrat. Geophys Res Lett 28(13):2529–2532CrossRefGoogle Scholar
  16. Huggel C, Schneider D, Julio Miranda P, Delgado Granados H, Kääb A (2008) Evaluation of ASTER and SRTM DEM data for lahar modeling: a case study on lahars from Popocat´epetl volcano, Mexico. J Volcanol Geotherm Res 170:99–110CrossRefGoogle Scholar
  17. Hungr O, Evans SG (1996) Rock avalanche runout prediction using a dynamic model. In: Senneset (ed) Proceedings of the 7th international symposium on landslides, Trondheim, vol 1. Balkema, Rotterdam, pp 233–238Google Scholar
  18. Hungr O, Evans SG (2004) Entrainment of debris in rock avalanches: an analysis of a long run-out mechanism. GSA Bull 116(9/10):1240–1252CrossRefGoogle Scholar
  19. Jacobsen K (2005) DEMs based on space images versus SRTM height models. ASPRS 2005 annual conference, Baltimore, 7–11 March 2005Google Scholar
  20. Kääb A (2005) Combination of SRTM3 and repeat ASTER data for deriving alpine glacier flow velocities in the Bhutan Himalaya. Remote Sens Environ 94(4):463–474CrossRefGoogle Scholar
  21. Katayama S, Matias O (1995) Tephra stratigraphic approach to the eruptive history of Pacaya volcano, Guatemala. Sci Rpt Tohoku Univ, 7th Ser (Geog), 45: 1–41Google Scholar
  22. Keating BH, McGuire WJ (2000) Island edifice failures and associated tsunami hazards. Pure Appl Geophys 157:899–955CrossRefGoogle Scholar
  23. Kelfoun K, Druitt TH (2005) Numerical modeling of the emplacement of Socompa rock avalanche, Chile. J Geophys Res 110:B12202.1–12202CrossRefGoogle Scholar
  24. Kelfoun K, Druitt T, van Wyk de Vries B, Guilbaud M-N (2008) Topographic reflection of the Socompa debris avalanche, Chile. Bull Volcanol 70:1169–1187. doi: 10.1007/s00445-008-0201-6 CrossRefGoogle Scholar
  25. Komorowski JC, Boudon G, Semet M, Beauducel F, Anténor-Habazac C, Bazin S, Hammouya G (2005) Guadeloupe. In: Lindsay J, Robertson R, Shepherd J, Ali S (eds) Volcanic hazard atlas of the Lesser Antilles. University of the West Indies, Seismic Research Unit, Trinidad and IAVCEI, 65–102Google Scholar
  26. Lipman PW, Rhodes JM, Dalrymple GB (1991) The Ninole Basalt—implications for the structural evolution of Mauna Loa volcano, Hawaii. Bull Volcanol 53:1–19. doi: 10.1007/BF00680316 CrossRefGoogle Scholar
  27. Le Friant A, Heinrich P, Deplus C, Boudon G (2003) Numerical simulation of the last flank-collapse event of Montagne Pelee, Martinique, Lesser Antilles. Geophys Res Lett 30(2)Google Scholar
  28. Lopez DL, Williams SN (1993) Catastrophic volcanic collapse: relation to hydrothermal processes. Science 260:1794–1796CrossRefGoogle Scholar
  29. McDougall S (2006) A new continuum dynamic model for the analysis of extremely rapid landslide motion across complex 3d terrain. PhD thesis, University of British Columbia, VancouverGoogle Scholar
  30. McDougall S, Hungr O (2004) A model for the analysis of rapid landslide motion across three dimensional terrain. Can Geotech J 41:1084–1097CrossRefGoogle Scholar
  31. Pitman EB, Patra AK, Bauer A, Sheridan MF, Bursik MI (2003) Computing debris flows and landslides. Phys Fluids 15:3638–3646CrossRefGoogle Scholar
  32. Pola Villasenor (2011) Physical and mechanical characterization of altered volcanic rocks for the stability of volcanic edifices. Ph. D Thesis, University of Milano—Bicocca, Milano, pp 134Google Scholar
  33. Ponomareva VV, Pevzner MM, Melekestsev IV (1998) Large debris avalanches and associated eruptions in the Holocene eruptive history of Shiveluch volcano, Kamchatka, Russia. Bull Volcanol 59(7):490–505CrossRefGoogle Scholar
  34. Ponomareva VV, Melekestsev IV, Dirksen OV (2006) Sector collapses and large landslides on late Pleistocene–Holocene volcanoes in Kamchatka, Russia. J Volcanol Geotherm Res 158:117–138CrossRefGoogle Scholar
  35. Richards JP, Villeneuve M (2001) The Llullaillaco volcano, northwestern Argentina: construction by Pleistocene volcanism and destruction by edifice collapse. J Volcanol Geotherm Res 105:77–105CrossRefGoogle Scholar
  36. Savage SB, Hutter K (1989) The motion of a finite mass of granular material down a rough incline. J Fluid Mech 199:177–215CrossRefGoogle Scholar
  37. Scott KM, Vallance JW, Kerle N, Macías JL, Strauch W, Devoli G (2005) Catastrophic precipitation-triggered lahar at Casita volcano, Nicaragua: occurrence, bulking and transformation. Earth Surf 30:59–79CrossRefGoogle Scholar
  38. Shea T, van Wyk de Vries B (2008) Structural analysis and analogue modeling of the kinematics and dynamics of rockslide avalanches. Geosphere 4(4):657–686CrossRefGoogle Scholar
  39. Shea T, van Wyk de Vries B, Pilato M (2008) Emplacement mechanisms of contrasting debris avalanches at Volcán Mombacho (Nicaragua), provided by structural and facies analysis. Bull Volcanol 70:899–921CrossRefGoogle Scholar
  40. Sheridan MF, Stinton AJ, Patra A, Pitman EB, Bauer A, Nichita CC (2005) Evaluating Titan 2D mass-flow model using the 1963 Little Tahoma Peak avalanches, Mount Rainier, Washington. J Volcanol Geotherm Res 139(1–2):89–102CrossRefGoogle Scholar
  41. Siebert L (1984) Large volcanic debris avalanches: characteristics of source areas, deposits and associated eruptions. J Volcanol Geotherm Res 22:163–197CrossRefGoogle Scholar
  42. Siebert L (2002) Landslides resulting from structural failure of volcanoes. In: Evans SG, De Graff JV (eds) Catastrophic landslides: effects, occurrence, and mechanisms. Geol Soc Amer Rev Eng Geol, 15: 209–235Google Scholar
  43. Sosio R, Crosta GB, Hungr O (2008) Complete dynamic modelling calibration for the Thurwieser rock avalanche (Italian Central Alps). Eng Geol 100(1–2):11–26CrossRefGoogle Scholar
  44. Sosio R, Crosta GB (2009) Rheology of concentrated granular suspensions and possible implications for debris flow modeling. Water Resour Res 45(W03412):16Google Scholar
  45. Sousa J, Voight B (1995) Multiple-pulsed debris avalanche emplacement at Mount St Helens in 1980. Evidence from numerical continuum flow simulations. J Volcanol Geotherm Res 66:227–250CrossRefGoogle Scholar
  46. Ui T (1983) Volcanic dry avalanche deposits—identification and comparison with non-volcanic debris stream deposits. J Volcanol Geotherm Res 18:135–150CrossRefGoogle Scholar
  47. Vallance JW, Siebert L, Rose WI, Girón J, Banks NG (1995) Edifice collapse and related hazards in Guatemala. J Volcanol Geotherm Res 66:337–355CrossRefGoogle Scholar
  48. Voight B (1981) Time scale for the first moments of the 18 May eruption. In: Lipman PW, Mullineaux DR (eds) The 1980 eruptions of Mount St Helens. U S Geol Surv Prof Pap, 1250:69–86Google Scholar
  49. Voight B, Elsworth D (1997) Failure of volcano slopes. Geotechnique 47(1):1–31CrossRefGoogle Scholar
  50. Voight B, Janda RJ, Glicken H, Douglass PM (1983) Nature and mechanics of the Mount St. Helens rockslide-avalanche of 18 May 1980. Geotechnique 33(3):243–273CrossRefGoogle Scholar
  51. Wadge G, Francis PW, Ramirez CF (1995) The Socompa collapse and avalanche event. J Volcanol Geotherm Res 66:309–336CrossRefGoogle Scholar
  52. Wang F, Sassa K (2010) Landslide simulation by a geotechnical model combined with a model for apparent friction change. Phys Chem Earth, Parts A/B/C 35(3–5):149–161CrossRefGoogle Scholar
  53. van Wyk de Vries B, Francis PW (1997) Catastrophic collapse at stratovolcanoes induced by gradual volcano spreading. Nature 387:387–390CrossRefGoogle Scholar
  54. van Wyk de Vries B, Self S, Francis PW Keszthelyi L (2001) A gravitational spreading origin for the Socompa debris avalanche. J Volcanol Geotherm Res 105:225–247CrossRefGoogle Scholar
  55. Watters RJ, Zimbelman DR, Bowman SD, Crowley JK (2000) Rock mass strength assessment and significance to edifice stability, Mount Rainier and Mount Hood. Cascade Range volcanoes. Pure Appl Geophys 157:957–976CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Rosanna Sosio
    • 1
  • Giovanni B. Crosta
    • 1
  • Oldrich Hungr
    • 2
  1. 1.Dipartimento di Scienze Geologiche e GeotecnologieUniversità degli Studi di Milano—BicoccaMilanoItaly
  2. 2.Department of Earth and Ocean SciencesUniversity of British ColumbiaVancouverCanada

Personalised recommendations