, Volume 9, Issue 2, pp 189–203 | Cite as

Dendrogeomorphic reconstruction of past landslide reactivation with seasonal precision: the Bois Noir landslide, southeast French Alps

  • Jérôme Lopez Saez
  • Christophe Corona
  • Markus Stoffel
  • Laurent Astrade
  • Frédéric Berger
  • Jean-Philippe Malet
Original Paper


The purpose of this study was to reconstruct spatiotemporal patterns of past landslide reactivation in a forested area of the Barcelonnette Basin (Bois Noir landslide, Southern French Alps). Analysis of past events was based on tree ring series from 79 heavily affected Mountain pine (Pinus uncinata Mill. ex Mirb) trees growing near or next to the landslide body. Dendrogeomorphic analysis focused on the presence of compression wood and growth reductions, with the first reaction being used for a dating of past reactivations with seasonal precision. A total of 151 growth disturbances were identified in the samples representing eight different stages of reactivation of the landslide body between 1874 and 2008. The spatiotemporal accuracy of the reconstruction is confirmed by historical records from neighboring sites and by aerial photographs. The onset of compression wood formation allows identifying five stages of landslide reactivation during the dormant season or the very beginning of the growing season of trees, i.e., between early October and late May, and three stages toward the end of the growth period. Monthly rainfall data from the HISTALP database demonstrate that the rainfall during four out of the eight reactivations are characterized by summer rainfall totals (July–August) exceeding 200 mm, pointing to the important role of summer rainstorms in the triggering of events at the Bois Noir landslide body.


Dendrogeomorpholoy Landslides Growth disturbances Seasonal precision French Alps 



This research has been supported by the DENDROGLISS program, funded by the MAIF foundation and the Cemagref by the PARAMOUNT program, ‘ImProved Accessibility, Reliability and security of Alpine transport infrastructure related to MOUNTainous hazards in a changing climate’, funded by the Alpine Space Programme, European Territorial Cooperation, 2007–2013. It has also been supported by the EU-FP7 project ACQWA (project no. GOCE-20290). The authors would like to acknowledge J. Corominas and two journal reviewers whose insightful comments helped them improve an earlier version of the paper.


  1. Aldrich J, Nelson F (1984) Linear Probability, Logit and Profit Models. Sage Publications, Beverly Hills, CAGoogle Scholar
  2. Alestalo J (1971) Dendrochronological interpretation of geomorphic processes. Fennia 105:1–139Google Scholar
  3. Amiot A, Nexon C (1995) Inventaire des aléas dans le Bassin de Barcelonnette depuis 1850. Mémoire de Maîtrise de Géographie Physique, Université Louis Pasteur, 173 ppGoogle Scholar
  4. Antoine P, Giraud D, Meunier M, Van Ash T (1995) Geological and geotechnical properties of the “Terres Noires” in southeastern France: weathering, erosion, solid transport and instability. Eng Geol 40:223–234CrossRefGoogle Scholar
  5. Astrade L, Bravard JP, Landon N (1998) Mouvements de masse et dynamique d’un géosystème alpestre: étude dendrogéomorphologique de deux sites de la de la vallée de Boulc (Diois, France). Géographie Physique et Quaternaire 52:153–165Google Scholar
  6. Bégin C, Filion L (1988) Age of landslides along the Grande Riviere de la Baleine estuary, eastern coast of Hudson Bay, Quebec (Canada). Boreas 17:289–299Google Scholar
  7. Bollschweiler M, Stoffel M, Schneuwly DM, Bourqui K (2008) Traumatic resin ducts in Larix decidua trees impacted by debris flows. Tree Physiol 28:255–263CrossRefGoogle Scholar
  8. Bollschweiler M, Stoffel M, Vázquez-Selem L, Palacios D (2010) Tree-ring reconstruction of past lahar activity at Popocatépetl, Mexico. Holocene 20:265–274CrossRefGoogle Scholar
  9. Braam RR, Weiss EEJ, Burrough PA (1987) Spatial and temporal analysis of mass movement using dendrochronology. Catena 6:573–584CrossRefGoogle Scholar
  10. Braker O (2002) Measuring and data processing in tree-ring research—a methodological introduction. Dendrochronologia 20:203–216CrossRefGoogle Scholar
  11. Breiman L, Freidman JH, Olshen R A, Stone C J (1984) Classification and Regression Trees. WadsworthGoogle Scholar
  12. BRGM (1974) Carte et notice géologique de Barcelonnette au 1:50 000ème, XXXV-39. Bureau des Recherches Géologiques et Minières, OrléansGoogle Scholar
  13. Brunsden D, Jones DKC (1976) The evolution of landslides slopes in Dorset. Philos Trans R Soc Lond Sér A 283:605–631CrossRefGoogle Scholar
  14. Buma J (2000) Finding the most suitable slope stability model for the assessment of the impact of climate change on a landslide in southeast France. Earth Surf Processes Landf 25:565–582CrossRefGoogle Scholar
  15. Butler D, Malanson G (1985) A reconstruction of snow-avalanche characteristics in Montana, U.S.A., using vegetative indicators. J Glaciol 31:185–187Google Scholar
  16. Butler D, Sawyer CF (2008) Dendrogeomorphology and high-magnitude snow avalanches: a review and case study. Nat Hazards Earth Syst Sci 8:303–309CrossRefGoogle Scholar
  17. Carrara PE, O’Neill JM (2003) Tree-ring dated landslide movements and their relationship to seismic events in southwestern Montana. Quat Res 59:25–35CrossRefGoogle Scholar
  18. Claessens L, Verburg PH, Schoorl JM, Veldkamp A (2006) Contribution of topographically based landslide hazard modelling to the analysis of the spatial distribution and ecology of kauri (Agathis australis). Landsc Ecol 21:63–76CrossRefGoogle Scholar
  19. Cook E (1985) A time series analysis approach to tree-ring standardization. PhD thesis, University of Arizona, TucsonGoogle Scholar
  20. Cook E, Kairiukstis L (1990) Methods of dendrochronology: applications in the environmental sciences. Kluwer, NorwellGoogle Scholar
  21. Corominas J, Moya J (1999) Reconstructing recent landslide activity in relation to rainfall in the Llobregat river basin, Eastern Pyrenees, Spain. Geomorphology 30:79–93CrossRefGoogle Scholar
  22. Corona C, Rovéra G, Lopez Saez J, Stoffel M, Perfettini P (2010) Spatio-temporal reconstruction of snow avalanche activity using tree-rings: Pierres Jean Jeanne avalanche talus, Massif de l’Oisans, France. Catena 83:107–118CrossRefGoogle Scholar
  23. Dubé S, Filion L, Hétu B (2004) Tree-ring reconstruction of high-magnitude snow avalanches in the northern Gaspé Peninsula, Québec. Arct Antarct Alp Res 36:555–564CrossRefGoogle Scholar
  24. Efthymiadis D, Jones PD, Briffa KR, Auer I, Böhm R, Schöner W, Frei C, Schmidli J (2006) Construction of a 10-min-gridded precipitation data set for the Greater Alpine Region for 1800–2003. J Geophys Res 111:D01105. doi: 10.1029/2005JD006120 CrossRefGoogle Scholar
  25. Fantucci R, McCord A (1996) Reconstruction of landslide dynamic with dendrochronological methods. Dendrochronologia 13:33–48Google Scholar
  26. Fantucci R, Sorriso-Valvo M (1999) Dendrogeomorphological analysis of a slope near lago, Calabria (Italy). Geomorphology 30:165–174CrossRefGoogle Scholar
  27. Flageollet JC, Maquaire O, Martin B, Weber D (1999) Landslides and climatic conditions in the Barcelonnette and Vars basins, Southern French Alps, France. Geomorphology 30:65–78CrossRefGoogle Scholar
  28. Fréchet J (1978) Sismicité du Sud-Est de la France, et une nouvelle méthode de zonage sismique. Thèse, Univ. Sci. Méd. Grenoble, 159 ppGoogle Scholar
  29. Fuller ML (1912) The New Madrid earthquake. U.S. Geological Survey Bulletin 494, 119 ppGoogle Scholar
  30. Guzzetti F, Peruccacci S, Rossi M, Stark CP (2007) Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol Atmos Phys 98:239–267. doi: 10.1007/s00703-007-0262-7 CrossRefGoogle Scholar
  31. Hebertson EG, Jenkins MJ (2003) Historic climate factors associated with major avalanche years on the Wasatch Plateau, Utah. Cold Regions Science and Technology 37(3):315–332Google Scholar
  32. Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin 44:69–75Google Scholar
  33. Holmes RL (1994) Dendrochronology program manual. Laboratory of Tree-Ring Research. Tucson, Arizona, USAGoogle Scholar
  34. Hovius N, Stark CP, Allen PA (1997) Sediment flux from a mountain belt derived by landslide mapping. Geology 25:231–234CrossRefGoogle Scholar
  35. Hupp CR, Osterkamp WR,Thornton JL (1987) Dendrogeomorphic evidence and dating of recent debris flows on Mount Shasta, Northern California: U.S. Geological Survey Professional Paper 1396-B, 39 ppGoogle Scholar
  36. Ibsen ML, Brunsden D (1996) The nature, use and problems of historical archives for the temporal occurrence of landslides, with specific reference to the south coast of Britain, Ventnor, Isle of Wight. Geomorphology 15:241–258CrossRefGoogle Scholar
  37. Jakob M, Bovis MJ (1996) Morphometrical and geotechnical controls of debris flow activity, southern Coast Mountains, British Columbia, Canada. Z Geomorphol Suppl 104:13–26Google Scholar
  38. Jakob M (2005) Debris flow hazard analysis. In: Jakob M, Hungr O (eds) Debris flow hazards and related phenomena. Praxis Publishing, Chichester, pp 411–438CrossRefGoogle Scholar
  39. Jenatton L, Guiguet R, Thouvenot F, Daix N (2007) The 16,000-event 2003–2004 earthquake swarm in Ubaye (French Alps). J Geophys Res 112:B11304CrossRefGoogle Scholar
  40. Jensen JM (1983) The Upper Gros Ventre landslide of Wyoming: a dendrochronology of landslide events and possible mechanics of failure: Geological Society of America Abstracts with Programs, vol 15, no. 5, p 387Google Scholar
  41. Maquaire O, Malet JP, Remaître A, Locat J, Klotz S, Guillon J (2003) Instability conditions of marly hillslopes: towards landsliding or gullying? The case of the Barcelonnette Basin, South East France. Eng Geol 70:109–130CrossRefGoogle Scholar
  42. Martin Y, Rood K, Schwab JW, Church M (2002) Sediment transfer by shallow landsliding in the Queen Charlotte Islands, British Columbia. Can J Earth Sci 39:189–205CrossRefGoogle Scholar
  43. Matsuura S, Asano S, Okamoto T (2008) Relationship between rain and/or meltwater, pore-water pressure and displacement of a reactivated landslide. Engineering Geology 101(1-2):49–59Google Scholar
  44. Mattheck C (1993) Design in der Natur. Reihe Ökologie 1: Rombach WissenschaftGoogle Scholar
  45. Mayer B, Stoffel M, Bollschweiler M, Hübl J, Rudolf-Miklau F (2010) Frequency and spread of debris floods on fans: a dendrogeomorphic case study from a dolomite catchment in the Austrian Alps. Geomorphology 118:199–206CrossRefGoogle Scholar
  46. McGee WJ (1893) A fossil earthquake. Geol Soc Am Bull 4:411–414Google Scholar
  47. Osterkamp WR, Hupp CR, Blodgett JC (1986) Magnitude and frequency of debris flows, and areas of hazard on Mount Shasta, California. U.S. Geological Survey Professional Paper 1396-C, 21 ppGoogle Scholar
  48. Panshin AJ, de Zeeuw C (1970) Textbook of Wood Technology, vol. 1, 3rd ed. McGraw-Hill, New YorkGoogle Scholar
  49. Petitcolas V, Rolland C (1996) Dendroecological study of three subalpine conifers in the region of Briançon (French Alps). Dendrochronologia 14:147–153Google Scholar
  50. R Development Core Team (2007) R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
  51. Razak KA, Straatsma MV, van Westen CJ, Malet JP (2009) Utilization of airborne LiDAR data for landslide mapping in forested terrain: status and challenges. In: Mulyana AK (ed) Proceedings of the 10th South East Asian Survey Congress (SEASC), Bali, Indonesia, 10 ppGoogle Scholar
  52. Razak KA, Straatsma MW, van Westen CJ, Malet JP, de Jong SM (2011) Airborne laser scanning of forested landslides characterization: terrain model quality and visualization. Geomorphology 126(1–2):186–200. doi: 10.1016/j.geomorph.2010.11.003 CrossRefGoogle Scholar
  53. Reardon BA, Pederson GT, Caruso CJ, Fagre DB (2008) Spatial reconstructions and comparisons of historic snow avalanche frequency and extent using tree rings in Glacier National Park, Montana, U.S.A. Arct Antarct Alp Res 40:148–160CrossRefGoogle Scholar
  54. Reeder JW (1979) The dating of landslides in Anchorage, Alaska—a case for earthquake triggered movements. Geological Society of America Abstracts with Programs, vol 11, no. 7, p 501Google Scholar
  55. Remaître A (2006) Morphologie et dynamique des laves torrentielles: application aux torrents des Terres Noires du bassin de Barcelonnette (Alpes du Sud). Thèse de Doctorat, Université de Caen-Basse-Normandie, p 487Google Scholar
  56. Remaître A, Malet JP, Cepeda J (2010) Landslides and debris flows triggered by rainfall: the Barcelonnette Basin case study, South French Alps. In: Malet J-P, Casagli N, Glade T (eds) Proceeding sof the International Conference ‘Mountain Risks: Bringing Science to Society’, 24–26 November 2010. CERG Editions, Strasbourg, Firenze, Italy, pp 141–146Google Scholar
  57. Ripley BD (1996) Pattern Recognition and Neural Networks, Cambridge: Cambridge University PressGoogle Scholar
  58. Santilli M, Pelfini M (2002) Dendrogeomorphology and dating of debris flows in the Valle del Gallo, Central Alps, Italy. Dendrochronologia 20:269–284CrossRefGoogle Scholar
  59. Shroder JF Jr (1978) Dendrogeomorphological analysis of mass movement on Table Cliffs Plateau, Utah. Quaternary Research 9:168–185Google Scholar
  60. Shroder J Jr, Marston RA, Stoffel M (2012) Mountain and hillslope geomorphology, treatise on geomorphology. Elsevier, AmsterdamGoogle Scholar
  61. Schneuwly DM, Stoffel M, Dorren LKA, Berger F (2009) Three-dimensional analysis of the anatomical growth response of European conifers to mechanical disturbance. Tree Physiol 29:1247–1257CrossRefGoogle Scholar
  62. Stefanini MC (2004) Spatio-temporal analysis of a complex landslide in the Northern Apenines (Italy) by means of dendrochronology. Geomorphology 63:191–202CrossRefGoogle Scholar
  63. Stoffel M, Lièvre I, Monbaron M, Perret S (2005a) Seasonal timing of rockfall activity on a forested slope at Täschgufer (Valais, Swiss Alps)—a dendrochronological approach. Z Geomorphol 49:89–106Google Scholar
  64. Stoffel M, Schneuwly D, Bollschweiler M, Lièvre I, Delaloye R, Myint M, Monbaron M (2005b) Analyzing rockfall activity (1600–2002) in a protection forest—a case study using dendrogeomorphology. Geomorphology 68:224241CrossRefGoogle Scholar
  65. Stoffel M, Bollschweiler M (2008) Tree-ring analysis in natural hazards research—an overview. Nat Hazards Earth Syst Sci 8:187–202CrossRefGoogle Scholar
  66. Stoffel M, Hitz OM (2008) Snow avalanche and rockfall impacts leave different anatomical signatures in tree rings of Larix decidua. Tree Physiol 28:1713–1720Google Scholar
  67. Stoffel M, Conus D, Grichting MA, Lièvre I, Maître G (2008) Unraveling the patterns of late Holocene debris-flow activity on a cone in the central Swiss Alps: chronology, environment and implications for the future. Glob Planet Chang 60:222–234CrossRefGoogle Scholar
  68. Stoffel M, Bollschweiler (2009) Tree-ring reconstruction of past debris flows based on a small number of samples—possibilities and limitations. Landslides 6:225–230CrossRefGoogle Scholar
  69. Tatard L, Grasso JR, Helmstetter A (2011) Interaction between landslides, seismicity and climate in New Zealand. J Geophys Res (in press)Google Scholar
  70. Therneau TM, Atkinson EJ (1997). An Introduction to Recursive Partitioning Using the rpart Routine." Technical Report 61, Section of Biostatistics, Mayo Clinic, RochesterGoogle Scholar
  71. Thiery Y (2007) Susceptibilité du Bassin de Barcelonnette (Alpes du Sud, France) aux 'mouvements de versant': cartographie morphodynamique, analyse spatiale et modélisation probabiliste. Thèse de Doctorat, Université de Caen-Basse-Normandie, Caen, 445 ppGoogle Scholar
  72. Thiery Y, Malet JP, Sterlacchini B, Puissant A, Maquaire O (2007) Landslide susceptibility assessment by bivariate methods at large scales: application to a complex mountainous environment. Geomorphology 92:38–59CrossRefGoogle Scholar
  73. Timell TE (1986) Compression wood in gymnosperms. Springer, BerlinGoogle Scholar
  74. Van Asch ThWJ, Van Steijn H (1991) Temporal patterns of mass movements in the French Alps. Catena 18:515–527Google Scholar
  75. van den Eeckhaut A, Muys B, Van Loy K, Poesen J, Beeckman H (2009) Evidence for repeated re-activation of old landslides under forest. Earth Surf Processes Landf 34:352–365. doi: 10.1002/esp.1727 CrossRefGoogle Scholar
  76. Wieczorek GF, Eaton LS, Yanosky TM, Turner EJ (2006) Hurricane-induced landslide activity on an alluvial fan along Meadow Run, Shenandoah Valley, Virginia (eastern USA). Landslides 3:95–106. doi: 10.1007/s10346-005-0029-5 CrossRefGoogle Scholar
  77. Williams PL, Jacoby GC, Buckley B (1992) Coincident ages of large landslides in Seattle’s Lake Washington. Geological Society of America Abstract with Programs, vol 24, no. 5, p 90Google Scholar
  78. Wilson RC (2005) The rise and fall of a debris-flow warning system for the San Francisco Bay region, California. In: Glade T, Anderson M, Crozier MJ (eds) Landslide hazard and risk. Wiley, Chichester, pp 493–516Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Jérôme Lopez Saez
    • 1
  • Christophe Corona
    • 1
  • Markus Stoffel
    • 2
    • 3
  • Laurent Astrade
    • 4
  • Frédéric Berger
    • 1
  • Jean-Philippe Malet
    • 5
  1. 1.Cemagref UR EMGRSaint-Martin d’ Hères CedexFrance
  2. 2.Laboratory of Dendrogeomorphology (, Institute of Geological SciencesUniversity of BernBernSwitzerland
  3. 3.Climatic Change and Climate Impacts, Institute for Environmental SciencesUniversity of GenevaCarouge-GenevaSwitzerland
  4. 4.Laboratoire EDYTEM, Bâtiment Belledonne, Campus de TechnolacUniversité de Savoie–CISMFranceFrance
  5. 5.Institut de Physique du Globe de Strasbourg, CNRS UMR 7516Université de Strasbourg/EOSTStrasbourg CedexFrance

Personalised recommendations