Skip to main content

Advertisement

Log in

Surface exposure dating and geophysical prospecting of the Holocene Lauvitel rock slide (French Alps)

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Large rock falls and rockslides represent a risk for human communities in mountainous areas as they can cause fatalities and destruction of settlements and infrastructures. Assessing the associated hazard requires constraining the time frequency of such events. Since large rockslides are not common, estimating their frequency requires recording them over a long period of time. The Holocene period then appears as pertinent, which implies that rockslide features have to be dated with absolute chronology methods. This paper presents a characterisation and dating of the Lauvitel rockslide, one of the largest Holocene rockslides in the French Alps. Combining field observation with electrical tomography profiles performed on the rockslide deposit that constitutes the Lauvitel Lake dam allows estimating its volume at a minimum of 12 × 106 m3. In addition, cosmic ray exposure dating using in situ-produced 10Be concentration measurements has been applied to date seven samples collected both on the main sliding surface and on blocks lying on the dam and further downstream. Ages obtained are consistent with a single large rockslide event, which occurred at 4.7 ± 0.4 10Be-ka and formed two distinct deposits. However, from a mechanical point of view, these clearly separated deposits could hardly result from a single movement. A comparison of their reach angles with those reviewed in the literature highlights that the lower deposit must result from rock avalanches larger than 107 m3, while the upper one (the Lauvitel dam) must result from several events smaller than 106 m3. In the context of hazard assessment for land use planning, these events can, however, be considered as a unique event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abele G (1974) Bergstürze in den Alpen. Ihre Verbreitung, Morphologie und Folgeerscheinungen. Wissenschaft Alpenvereinshefte 25, München

    Google Scholar 

  • Ballantyne CK (2002) Paraglacial geomorphology. Quatern Sci Rev 21:1935–2017

    Article  Google Scholar 

  • Braucher R, Brown ET, Bourlès DL, Colin F (2003) In situ produced 10Be measurements at great depths: implications for production rates by fast muons. Earth Planet Sci Lett 211:251–258

    Article  Google Scholar 

  • Brown ET, Edmond JM, Raisbeck GM, Yiou F, Kurz MD, Brook ED (1991) Examination of surface exposure ages of Antarctic moraines using in situ produced 10Be and 26Al. Geochim Cosmochim Acta 55:2269–2283

    Article  Google Scholar 

  • Claerbout JF, Muir F (1973) Robust modeling with erratic data. Geophysics 38:826–844

    Article  Google Scholar 

  • Climchalp (2008a) Climate change in the Alps: impacts and natural hazards. ONERC Technical Report N°1

  • Climchalp (2008b) State of knowledge on climate change impacts in the Alps. http://www.risknat.org/projets/climchalp_wp5/pages_eng/base_eng.htm

  • Corominas J (1996) The angle of reach as a mobility index for small and large landslides. Can Geotech J 33:260–271

    Article  Google Scholar 

  • Cossart E, Braucher R, Fort M, Bourlès DL, Carcaillet J (2008) The consequences of glacial debuttressing in deglaciated areas: pieces of evidence from field data and cosmogenic datings. Geomorphology 95:3–26

    Article  Google Scholar 

  • Cruden DM (1995) Rock slope movements in the Canadian Cordillera. Can Geotech J 22:528–540

    Article  Google Scholar 

  • Delebecque A (1898) Les lacs français. Chamerot & Renouard, Paris, p 436

    Google Scholar 

  • Douglass DC, Singer BS, Kaplan MR, Mickelson DM, Caffee MW (2006) Cosmogenic nuclide surface exposure dating of boulders on last-glacial and late-glacial moraines, Lago Buenos Aires, Argentina: interpretive strategies and paleoclimate implications. Quatern Geochronol 1:43–58

    Article  Google Scholar 

  • Dunne J, Elmore D, Muzikar P (1999) Scaling factors for the rates of production of cosmogenic nuclides for geometric shielding and attenuation at depth on sloped surfaces. Geomorphology 27:3–11

    Article  Google Scholar 

  • Dussauge-Peisser C, Helmstetter A, Grasso JR, Hantz D, Desvarreux P, Jeannin M, Giraudet A (2002) Probabilistic approach to rock fall hazard assessment: potential of historical data analysis. Nat Hazards Earth Syst Sci 2:15–26

    Article  Google Scholar 

  • Fell R, Ho KKS, Lacasse S, Leroi E (2005) A framework for landslide risk assessment and management. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) Landslide risk management. Taylor & Francis, London, ISBN 04 1538 043 X.: 3–25

  • Hantz D, Frayssines M (2007) Contribution à l'évaluation de la durée de vie d'un compartiment rocheux susceptible de s'ébouler. Rev Fr Géotech 119:65–79

    Google Scholar 

  • Hantz D, Vengeon JM, Dussauge-Peisser C (2003) An historical, geomechanical and probabilistic approach to rock-fall hazard assessment. Nat Hazards Earth Syst Sci 3:693–701

    Article  Google Scholar 

  • Heim A (1932) Bergsturz und Menschenleben. Fretz & Wasmuth Verlag, Zurich, 218 pp.

  • Hormes A, Ivy-Ochs S, Kubik PW, Ferreli L, Maria Michetti A (2008) 10Be exposure ages of rock avalanche and a late glacial moraine in Alta Valtellina, Italian Alps. Quatern Int 190:136–145

    Article  Google Scholar 

  • Hungr O, Evans SG (2004) The occurrence and classification of massive rock slope failure. Felsbau 22:1–11

    Google Scholar 

  • Ivy-Ochs S, Poschinger AV, Synal H-A, Maisch M (2009) Surface exposure dating of the Flims landslide, Graubünden, Switzerland. Geomorphology 103:104–112

    Article  Google Scholar 

  • Kilian W (1922) Les stades de recul des glaciers alpins et l'origine du lac Lauvitel (Oisans). C R Acad Sci 175:660–665

    Google Scholar 

  • Le Roux O, Schwartz S, Gamond JF et al (2009) CRE dating on the head scarp of a major landslide (Séchilienne, French Alps), age constraints on Holocene kinematics. Earth Planet Sci Lett 280:236–245

    Article  Google Scholar 

  • Lowell TV (1995) The application of radiocarbon ages estimates to the dating of glacial sequences: an example from the Miami sublobe, Ohio, USA. Quatern Sci Rev 14:85–99

    Article  Google Scholar 

  • McIntyre G, Brooks C, Compston W, Turek A (1966) The statistical assessment of Rb–Sr isochrones. J Geophys Res 71:5459–5468

    Google Scholar 

  • Merchel S, Herpers U (1999) An update on radiochemical separation techniques for the determination of long-lived radionuclides via accelerator mass spectrometry. Radiochimica Acta 84:215–219

    Google Scholar 

  • Monjuvent G (1978) Le Drac: morphologie, stratigraphie et chronologie quaternaire d'un bassin Alpin. Editions du CNRS, Paris, p 433

    Google Scholar 

  • Moon AT, Wilson RA, Flentje PN (2005) Developing and using landslide frequency models. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) Landslide risk management. Taylor and Francis, London, pp 681–690

    Google Scholar 

  • Niklaus M (1967) Geomorphologische und limnologische Untersuchungen am Oeschinensee. Beiträge zur Geologie der Schweiz–Hydrologie, Nr 14. Bern

  • Nishiizumi K, Imamura M, Caffee MW, Southon JR, Finkel RC, McAninch J (2007) Absolute calibration of 10Be AMS standards. Nucl Instrum Methods Phys Res, B Beam Interact Mater Atoms 258:403–413

    Article  Google Scholar 

  • Picarelli L, Oboni F, Evans SG, Mostyn G, Fell R (2005) Hazard characterization and quantification. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) Landslide risk management. Taylor & Francis, London, ISBN 04 1538 043 X: 27–61

  • Pigati JS, Lifton NA (2004) Geomagnetic effects on time-integrated cosmogenic nuclide production with emphasis on in situ 14C and 10Be. Earth Planet Sci Lett 226:193–205

    Article  Google Scholar 

  • Prager C, Ivy-Ochs S, Ostermann M, Synal HA, Patzelt G (2009) Geology and radiometric 14C-, 36Cl-and Th-/U-dating of the Fernpass rockslide (Tyrol, Austria). Geomorphology 103:93–103

    Article  Google Scholar 

  • Raisbeck GM, Yiou F, Bourlès D, Lestringuez J, Deboffle D (1987) Measurements of 10Be and 26Al with a Tandetron AMS facility. Nucl Instrum Methods Phys Res, B Beam Interact Mater Atoms 29:22–26

    Article  Google Scholar 

  • Raisbeck GM, Yiou F, Bourlès D et al (1994) The AMS facility at Gif-sur-Yvette: progress, perturbations and projects. Nucl Instrum Methods Phys Res, B Beam Interact Mater Atoms 92:43–46

    Article  Google Scholar 

  • Sartori M, Baillifard F, Jaboyedoff M, Rouiller JD (2003) Kinematics of the 1991 Randa rockslides (Valais, Switzerland). Nat Hazards Earth Syst Sci 3:423–433

    Article  Google Scholar 

  • Schoeneich P, Hantz D, Deline P, Amelot F (2008) A new database of Alpine rock falls and rock avalanches. Interpraevent, Dornbirn, Austria 2:243–250

    Google Scholar 

  • Soldati M, Corsini A, Pasuto A (2004) Landslides and climate change in the Italian Dolomites since the Late glacial. Catena 55:141–161

    Article  Google Scholar 

  • Stone JO (2000) Air pressure and cosmogenic isotope production. J Geophys Res 105:23753–23759

    Article  Google Scholar 

  • Van Husen D, Ivy-Ochs S, Alfimov V (2007) Landslides in Almtal: mechanism and age. Austrian J Earth Sci 100:114–126

    Google Scholar 

Download references

Acknowledgements

This study is part of RD’s Msc project at Université Paul Cézanne and Université Joseph Fourier in the framework of the ANCEMT project funded by the Agence Nationale de la Recherche (project N° 06-BLAN-0207). We thank the Parc National des Ecrins, X. Bodin, D. Fiat and O. Leroux for invaluable field assistance. We acknowledge S. Merkel and G. Aumaitre for technical assistance during 10Be samples preparation and measurements, and P. van der Beek for improving the style of the manuscript. S. Garambois and A. Revil are also acknowledged for fruitful discussions on the interpretation of electrical prospecting results and D. Dumas for providing lake-level information. The geophysical survey was a low-carbon-footprint operation, with material transported by donkeys. A constructive review by an anonymous reviewer improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romain Delunel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delunel, R., Hantz, D., Braucher, R. et al. Surface exposure dating and geophysical prospecting of the Holocene Lauvitel rock slide (French Alps). Landslides 7, 393–400 (2010). https://doi.org/10.1007/s10346-010-0221-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-010-0221-0

Keywords

Navigation