, Volume 6, Issue 4, pp 309–319 | Cite as

Slope stability modelling with SINMAP in a settlement area of the Swabian Alb

  • Birgit TerhorstEmail author
  • Roger Kreja
Original Paper


During the last decades, damages to houses caused by landslides have been consistently occurring in a residential area in Öschingen/Germany. The residential area is located in ductile Callovian clays (Jurassic). Furthermore, in the back slope of the research area, a large Pleistocene slide mass negatively influences the slope stability. Through an integrative approach, the maximum data available for the study area was compiled in order to create a susceptibility map for landslide hazard. Detailed geomorphological field survey provided a valuable base for the assessment of slope stability using Stability Index Mapping (SINMAP). In the framework of long-term studies, consolidated results concerning mass movements and climatic-driven Pleistocene slope evolution, as well as recent slope dynamics, could be gained. These outcomes are compared to the results provided by slope stability modelling with SINMAP. The calculations outline some parameters responsible for higher risks. In general, the interaction of topography, water balances and substrate at the Schönberger Kapf can be designated to cause instability in wide areas. Hydrological parameters are essential for destabilisation of slope and they cause at least temporally destabilisation along channel structures, which presumably are influenced by seasonally increased spring discharge and a reduction in the underground shear strength. The exceptional dimension of the rotational block in connection with the specific slope hydrologic conditions and the intensive anthropogenic impact in the rear slope of the building area Auchtert in Öschingen has to be termed very problematic on the basis of the studies carried out.


SINMAP Swabian Alb Landslide Natural hazard Susceptibility map 


  1. Barnickel F, Becht M (2005) Regional historical analysis of natural hazards in the Alps—the HANG Project. Z Geomorphol N.F., Suppl. Bd. 138:27–36Google Scholar
  2. Bell R (2007) Lokale und regionale Gefahren- und Risikoanalyse gravitativer Massenbewegungen an der Schwäbischen Alb. Online publication University of Bonn, PhD thesis,, urn:nbn:de:hbz:5N-11072
  3. Beven KG, Kirkby MJ (1979) A physically based variable contributing area model of basin hydrology. Hydrol Sci Bull 24:43–69CrossRefGoogle Scholar
  4. Bibus E (1986) Die Rutschung am Hirschkopf bei Mössingen. Geoökodynamik 7:333–360Google Scholar
  5. Bibus E (1999) Vorzeitige, rezente und potentielle Massenbewegungen in SW-Deutschland—Synthese des Tübinger Beitrags zum MABIS-Projekt. In: Bibus E, Terhorst B (eds) Angewandte Studien zu Massenbewegungen. Tübinger Geowissenschaftliche Arbeiten D5:1–57Google Scholar
  6. Bibus E, Terhorst B, Kallinich J (2001) Dating methods of mass movements in the MABIS-project. Z Geomorphol N.F. 125:153–162Google Scholar
  7. Bleich KE (1960) Das Alter des Albtraufs. Jahresh Ver Vaterl Naturkd Württemb 115:39–92Google Scholar
  8. Brunsden D, Lee EM (2004) Behaviour of coastal landslide systems: an inter-disciplinary view. Z Geomorphol N.F. 134:1–112Google Scholar
  9. Brunsden D, Ibsen ML, Lee M, Moore R (1995) The validity of temporal archive records for geomorphological processes. Quaest Geogr 4:79–91Google Scholar
  10. Busche D (2001) Early quaternary landslides of the Sahara and their significance for geomorphic and climatic history. J Arid Environ 49/3:429–448CrossRefGoogle Scholar
  11. Cendrero A, Dramis F (1996) The contribution of landslides to landscape evolution in Europe. Geomorphology 15:191–211CrossRefGoogle Scholar
  12. Chinnayakanahalli K (2004) An objective method for the intercomparison of terrain stability models and incorporation of parameter uncertainty. Master thesis Utah State University,
  13. Chinnayakanahalli K, Tarboton DG, Pack RT (2003) An objective method for the intercomparison of terrain stability models. American Geophysical Union, Fall Meeting 2003Google Scholar
  14. Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation. Transportation Research Board Special Report, 247:36–75Google Scholar
  15. Damm B (2005) Gravitative Massenbewegungen in Südniedersachsen. Die Altmündener Wand—Analyse und Bewertung eines Rutschungsstandortes. Z Geomorphol N.F. Suppl.-Bd. 138:189–209Google Scholar
  16. Damm B, Terhorst B (2007) Quaternary slope formation and landslide susceptibility in the Flysch Zone of the Vienna Forest (Austria). In: Kellerer-Pirklbauer A, Keiler M, Embleton-Hamann C, Stötter H (eds) Geomorphology for the Future. Innsbruck University Press, pp 89–96Google Scholar
  17. Dietrich WE, Montgomery DR (1994) A physically based model for the topographic control on shallow landsliding. Water Resour Res 30/4:115–1171Google Scholar
  18. Dikau R, Brunsden D, Schrott L, Ibsen M-L (Eds.) (1996) Landslide Recognition. John Wiley & Sons, ChichesterGoogle Scholar
  19. Durwen K-J, Weller F, Tilk C, Beck H, Beuttler H, Klein S (1996) Digitaler Landschaftsökologischer Atlas Baden-Württemberg. Institut für Angewandte Forschung (IAF) der Fachhochschule Nürtingen, CD ROMGoogle Scholar
  20. Fundinger A (1985) Ingenieurgeologische Untersuchung und geologische Kartierung (Dogger/Malm) der näheren Umgebung der Rutschungen am Hirschkopf bei Mössingen und am Irrenberg bei Thanheim. Diploma thesis University of Tübingen, 125 p, unpublishedGoogle Scholar
  21. Geologisches Landesamt Baden-Württemberg (1968) Geologische Beurteilung des Bebauungsplanes ‘Auchtert’ in Öschingen, Landkreis Tübingen (Top. Karte 1: 25 000 7520), unpublished expertise 05.08.1968, Dr. Schädel, FreiburgGoogle Scholar
  22. Geologisches Landesamt Baden-Württemberg (1976) Ingenieurgeologisches Gutachten über die Bebauung der gerutschten Bodenscholle im Gewann Auchtert, Ortsteil Öschingen, Lkr. Tübingen (Top. Karte 1: 25 000 7520), unpublished expertise 13.02.1976, Dr. Schädel, FreiburgGoogle Scholar
  23. González Díez A, Salas L, Díaz de Terán JR, Cendrero A (1996) Late quaternary climate changes and mass movement frequency and magnitude in the Cantabrian region, Spain. Geomorphology 15:291–309CrossRefGoogle Scholar
  24. Hammont C, Hall D, Miller S, Swetik P (1992) Level I Stability Analysis (LISA) Documentation for Version 2.0. General Technical Report INT-285, USDA Forest Service Intermountain Research Station (190 p.)Google Scholar
  25. Kallinich J (1999) Verbreitung, Alter und geomorphologische Ursachen von Massenverlagerungen an der Schwäbischen Alb auf der Grundlage von Detail- und Übersichtskartierungen. Tübinger Geowissenschaftliche Arbeiten, D4: pp. 166Google Scholar
  26. Knoblich K (1967) Mechanische Gesetzmäßigkeiten beim Auftreten von Hangrutschungen. Z Geomorphol N.F. 11:286–299Google Scholar
  27. Kraut C (1999) Der Einfluss verschiedener Geofaktoren auf die Rutschempfindlichkeit an der Schichtstufe der Schwäbischen Alb. Tüb Geowiss Arb D5:129–148Google Scholar
  28. Kreja R, Terhorst B (2005) Naturgefahren in einem Baugebiet bei Öschingen an der Schwäbischen Alb: GIS-gestützte Ermittlung rutschungsgefährdeter Gebiete am Schönberger Kapf bei Öschingen. DIE ERDE 136/4:397–414Google Scholar
  29. Leser H (1982) Erläuterungen zur Geomorphologischen Karte 1:25.000 der Bundesrepublik Deutschland, GMK 25 Blatt 9 7520 Mössingen (56 p.)Google Scholar
  30. Leser H (1997) Landschaftsökologie. UTB, Ulmer Verlag (433 p.)Google Scholar
  31. Meisina C, Scarabelli S (2007) A comparative analysis of terrain stability models for predicting shallow landslides in colluvial soils. Geomorphology 87/3:207–223CrossRefGoogle Scholar
  32. Neuhäuser B, Terhorst B (2006) Landslide susceptibility assessment using weights-of-evidence applied on a study site at the Jurassic escarpment of the Swabian Alb (SW-Germany). Geomorphology 86:12–24CrossRefGoogle Scholar
  33. Pack RT, Tarboton DG, Goodwin CG (1999) SINMAP—a stability index approach to terrain stability hazard mapping. SZ Terratech, Salmon ArmGoogle Scholar
  34. Quinn P, Beven K, Chevallier P, Planchon O (1991) The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models. Hydrol Process 5:59–79CrossRefGoogle Scholar
  35. Sass O, Bell R, Glade T (2008) Comparison of GPR, 2D-rsistivity and traditional techniques for the subsurface exploration of the Öschingen landslide, Swabian Alb (Germany). Geomorphology 15:89–103CrossRefGoogle Scholar
  36. Shinro A, Kazuyuki S, Akihisa T, Daisuke H (2002) Slope evolution processes of landslides around the Quaternary volcanoes in the Tohoku district, Japan. A case study in the surrounding area of the Hijiori caldera, Yamagata Prefecture. Landslides 38/4:10–17Google Scholar
  37. Sidle RC, Wu W (1999) Simulating effects of timber harvesting on the temporal and spatial distribution of shallow landslides. Z Geomorphol N. F. 43/2:185–201Google Scholar
  38. Singhroy V, Glenn N, Ohkura H (2004) Landslide hazard team report of the CEOS disaster management support group. CEOS Disaster Information Server, [URL:] (2004-03-05)
  39. Tarboton GD (1997) A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resour Res 33/2:309–319CrossRefGoogle Scholar
  40. Terhorst B (1997) Formenschatz, Alter und Ursachenkomplexe von Massenverlagerungen an der schwäbischen Juraschichtstufe unter besonderer Berücksichtigung von Boden- und Deckschichtenentwicklung. Tübinger Geowissenschaftliche Arbeiten, D2 (212 p.)Google Scholar
  41. Terhorst B (1998) Die Wechselbeziehungen zwischen Relief und Hydrologie an Rutschungshängen der Schwäbischen Alb. Z Geomorphol N. F. 112:83–92Google Scholar
  42. Terhorst B (1999) Distribution of soils and solifluction layers in landslide areas of South-West Germany. In: Fang X, Nettleton D (eds) Climatic change: paleopedological and soil rock magnetic approaches. Chin Sci Bull 44:173–180Google Scholar
  43. Terhorst B (2001) Mass movements of various ages on the Swabian Jurassic escarpment: geomorphologic processes and their causes. Z Geomorphol N. F. 125:65–87Google Scholar
  44. Terhorst B (2007) Soil distribution and periglacial cover beds in the Jurassic cuesta scarp in SW-Germany. Catena 71:467–476CrossRefGoogle Scholar
  45. Terhorst B, Damm B (2009) Slope stability and slope formation in the Flysch Zone of the Vienna Forest (Austria). J Geol Res 2009:10. doi: 10.1155/2009/589037
  46. Terlien MTJ, Van Westen CJ, Van Asch TWJ (1995) Deterministic modelling in GIS-based landslide hazard assessment. In: Carrara A, Guzzetti F (eds) Geographical information system in assessing natural hazards. Kluwer, Dordrecht, pp 57–77Google Scholar
  47. Thein S (2000) Massenverlagerungen an der Schwäbischen Alb—statistische Vorhersagemodelle und regionale Gefährdungskarten unter Anwendung eines Geographischen Informationssystems. Tübinger Geowissenschaftliche Arbeiten, D6 (187 p.)Google Scholar
  48. Van Asch Th WJ, Buma J, Van Beek LPH (1999) A view on some hydrological triggering systems in landslides. Geomorphology 30/1-2:25–32CrossRefGoogle Scholar
  49. Varnes DJ (1978) Slope movement and types of processes. In: Schuster RL, Krizek RJ (eds) Landslides. Analysis and Control Transportation Research Board, National Academy of Sciences, Special Report, 176, pp 11–33Google Scholar
  50. Varnes DJ (1984) Landslide hazard zonation: a review of principles and practice of the United Nations Educational, Scientific and Cultural Organization. Natural Hazards, 3, UNESCO PressGoogle Scholar
  51. Wawer R, Nowocien E (2003) Application of SINMAP terrain stability model to Grodarz stream watershed. Electronic Journal of Polish Agricultural Universities, Environmental Development 6/1,

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Institute of GeographyUniversity of WürzburgWürzburgGermany
  2. 2.Institute of GeographyUniversity of TübingenTübingenGermany

Personalised recommendations