Advertisement

Landslides

, Volume 3, Issue 4, pp 275–287 | Cite as

Natural hazards vs human impact: an integrated methodological approach in geomorphological risk assessment on the Tursi historical site, Southern Italy

  • M. LazzariEmail author
  • E. Geraldi
  • V. Lapenna
  • A. Loperte
Original Article

Abstract

The Tursi–Rabatana historical site is very representative of the cultural heritage of Basilicata, Southern Italy. Morphological evolution of the landscape is characterized by very intense erosive phenomena such as landslides, deep gullies, rills, and piping, which affect the perimeter of urban settlements and threaten the conservation of these sites. Rainfalls and the lithology of the substratum are the main factors to which the landscape evolution is linked, triggering landslide and linear erosion phenomena. Climate analysis carried out during the last century showed an increasing trend in the rainfall intensity over extremely short periods. This condition also induced an increase in the vulnerability level of the slopes. Integrated analysis between territorial data (geology, geomorphology, climate) and historical documents showed that, at least from the last century, the geomorphological hazard has been accentuated by the intense human activity of cave excavation along several fronts under the present urban area. The geophysical investigation also permitted the mapping of shallow caves and tunnels in the subsurface reconstructing the multilevel complex hypogeal system. This work also produced evidence that the human interventions occurring during the historical period have been a determining factor in increasing the hazard level and accelerating the preexisting morphological processes.

Keywords

Natural hazard Human impact Landslide Pipe erosion Geophysics Southern Italy Basilicata 

Notes

Acknowledgments

We would like to thank the anonymous referees and Maia Laura Ibsen (Kingston University, London) for their useful comments and suggestions to improve the manuscript.

References

  1. Bertolini G, Guida M, Pizziolo M (2005) Landslide in Emilia-Romagna region (Italy): strategies for hazard assessment and risk management. Landslides 2:302–312CrossRefGoogle Scholar
  2. Bocco G (1991) Gully erosion, processes and models. Prog Phys Geogr 15:392–406CrossRefGoogle Scholar
  3. Bryan RB, Jones JAA (1997) The significance of soil piping processes: inventory and prospect. Geomorphology 20:209–218CrossRefGoogle Scholar
  4. Caldara M, Loiacono F, Morlotti E, Pieri P, Sabato L (1988) I depositi pliopleistocenici della parte Nord del bacino di Sant’Arcangelo (Appennino lucano): caratteri geologici e paleoambientali. Mem Soc Geol Ital 41:391–410Google Scholar
  5. Casero P, Roure F, Endignoux L, Moretti I, Muller C, Sage L, Vially R (1988) Neogene geodynamic evolution of the southern Apennines. Mem Soc Geol Ital 41:109–120Google Scholar
  6. Catenacci V (1992) Il dissesto geologico e geoambientale in Italia dal dopoguerra al 1990. Mem. Descrittive della Carta Geol. d’It., 47, Rome, Italy, pp. 31Google Scholar
  7. Crouch RJ (1976) Field tunnel erosion—a review. Soil Conserv J, pp 98–111Google Scholar
  8. D’Argenio B, Pescatore T, Scandone P (1973) Schema geologico dell’Appennino meridionale. In: Proceedings of Accademia Nazionale dei Lincei 183:49–72Google Scholar
  9. Farifteh J, Soeters R (1999) Factors underlying piping in the Basilicata region, southern Italy. Geomorphology 26:239–251CrossRefGoogle Scholar
  10. Fonseca CD (1978) Habitat-Strutture-Territorio: Nuovi metodi di ricerca in tema di Civiltà rupestre. In: Proceedings of the Third Intern. Congr. on Studio sulla civiltà rupestre medioevale nel Mezzogiorno d’Italia “Habitat-Strutture-Territorio,” Galatina, Italy, pp 17–18Google Scholar
  11. Geraldi E (2004) Ambiente naturale e ambiente costruito: antichi legami spezzati tra uomini, terra e acqua nel cuore dell’abitato della Rabatana di Tursi. In: Fonseca CD (ed) La Rabatana di Tursi. Altrimedia, Matera, pp 183–207Google Scholar
  12. Guillou A (1965) La Lucanie bizantine. Byzantion 35:144–149Google Scholar
  13. Gutierrez M, Sancho C, Benito G, Sirvent J, Desir G (1997) Quantitative study of piping processes in badlands areas of the Ebro Basin, NE Spain. Geomorphology 20(3–4):237–253CrossRefGoogle Scholar
  14. Hayes MJ (2002) Drought indices. Available at http://www.drought.unl.edu
  15. Hippolyte JC (1992) Tectonique de l’Apennin méridional: structures et paléocontraintes d’un prisme d’accrétion continental. Ph.D. Thesis, Université P. et M. Curies, ParisGoogle Scholar
  16. Hippolyte JC, Angelier J, Roure F, Casero P (1994) Piggyback basin development and thrust belt evolution: structural and paleostress analysis of Plio-Quaternary basin in the southern Apennines. J Struct Geol 16:159–173CrossRefGoogle Scholar
  17. Knott SD (1987) The Liguride complex of southern Italy—a cretaceous to Paleogene accrectionary wedge. Tectonophysics 112:217–226CrossRefGoogle Scholar
  18. Jones JAA (1981) The nature of soil piping. A review of research. Geobooks, Norvich, pp 301Google Scholar
  19. Lazzari M (2004) Rischio geomorfologico relativo e dissesto idrogeologico dell’area urbana di Tursi: naturale o antropogenico? In: Fonseca CD (ed) La Rabatana di Tursi. Altrimedia, Matera, pp 287–303Google Scholar
  20. Lazzari S, Lentini F (1980) Note illustrative del Foglio 507 Pisticci. Carta geologica del Bacino dell’Agri alla scala 1:50000. Regione Basilicata, Potenza, p 55Google Scholar
  21. Loke MH, Barker RD (1996) Rapid least-squares inversion of apparent resistivity pseudosections by quasi-Newton method. Geophys Prospect 44:131–152CrossRefGoogle Scholar
  22. McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. In: Proceedings of 8th Conference an applied climatology. Anaheim, CA, 17–22 January 1993, pp. 179–184Google Scholar
  23. McKee TB, Doesken NJ, Kleist J (1995) Drought monitoring with multiple time scales. In: Proceedings of 9th Conference an applied climatology. Dallas, TX, 15–20 January 1995, pp 233–236Google Scholar
  24. Ogniben L (1969) Schema introduttivo alla geologia del confine calabro-lucano. Mem Soc Geol Ital 8:453–763Google Scholar
  25. Parker GG Jr, Higgins CG (1990) Piping and pseudokarst in dryland, with case studies by G.G. Parker, Sr. and W.W. Wood. In: Higgins CG, Coates DR (eds) Groundwater geomorphology; the role of subsurface water in earth surface processes and landforms. Geol Soc Am Spec Paper 252:77–110Google Scholar
  26. Piccareta M, Capolongo D, Boenzi F (2004) Trend analysis of precipitation and drought in Basilicata from 1923 to 2000 within a southern Italy context. Int J Climatol 24:907–922CrossRefGoogle Scholar
  27. Piccareta M, Capolongo D, Bentivenga M, Pennetta L (2005) Influenza delle precipitazioni e dei cicli umido-secco sulla morfogenesi calanchiva in un’area semi-arida della Basilicata (Italia meridionale). Geogr Fis e Din Quat 7(suppl):281–289Google Scholar
  28. Pieri P, Sabato L, Loiacono F, Marino M (1994) Il bacino di piggyback di Sant’Arcangelo: evoluzione tettonico-sedimentaria. Boll Soc Geol Ital 113:465–481Google Scholar
  29. Sharma PS (1997) Environmental and engineering geophysics. Cambridge University Press, CambridgeGoogle Scholar
  30. Soldani D, Loiacono F (2000) Studio integrato di un sistema deltizio pleistocenico (Sabbie di Tursi, Appennino meridionale): analisi sedimentologiche e tafonomiche. In: Proceedings of Riunione Annuale GIS, Pescara, Italy, pp 56–57Google Scholar
  31. Soldani D, Girone A, Stefanelli S, Loiacono F (2003) I geositi delle “Sabbie di Tursi” (Basilicata): un percorso scientifico-didattico attraverso un sistema deltizio. Geol Ambiente 1(suppl):221–230Google Scholar
  32. Steeples DW (2001) Engineering and environmental geophysics at the millennium. Geophysics 66(1):31–35CrossRefGoogle Scholar
  33. Stocking MA (1981) Model of piping in soils. Trans Jpn Geomorphol Union 2(2):263–278Google Scholar
  34. UNESCO/FAO (1963) Ecological study of the Mediterranean zone, bioclimatic map of the Mediterranean zone, explanatory notes. Arid zone research 21Google Scholar
  35. Von Falkenhausen V (1978) La dominazione bizantina nell’Italia meridionale dal IX all’XI secolo. Bari, pp 65–72Google Scholar
  36. WP/WLI Working Party on the world Landslide Inventory and Canadian Geotechnical Society (1993) Multilingual landslide glossary. BiTech Publisher, Richmond, BCGoogle Scholar
  37. Zavala C (2000) Stratigraphy and sedimentary history of the Plio-Pleistocene Sant’Arcangelo basin, southern Apennines, Italy. Riv Ital Paleontol Stratigr 106(3):399–416Google Scholar
  38. Zavala C, Mutti E (1996) Stratigraphy of the Plio-Pleistocene Sant’Arcangelo basin, Basilicata, Italy. In: Proceedings of Riunione annuale del Gruppo Informale di Sedimentologia. Catania 10–14 ottobre 1996, pp 279–282Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • M. Lazzari
    • 1
    Email author
  • E. Geraldi
    • 1
  • V. Lapenna
    • 2
  • A. Loperte
    • 2
  1. 1.Institute for Archaeological and Monumental Heritage, IBAM-CNRContrada S.Loja Tito Scalo, PotenzaItaly
  2. 2.Institute of Methodologies for Environmental Analysis, IMAA-CNRContrada S.Loja Tito Scalo, PotenzaItaly

Personalised recommendations