Abstract
The native Eurasian wild boar (Sus scrofa) is a relevant wildlife host for African swine fever (ASF) virus, contributing to infection maintenance and spread and representing a challenge for disease control. Combining published scientific evidence with expert opinion, we provide an updated global overview of ASF control in wild boar and feral pigs in different epidemiological scenarios. We synthesize current knowledge on key background aspects of wild boar ecology and management and on ASF epidemiology in wild boar and their relative, the feral pig. We propose that establishing a proper surveillance and monitoring scheme is a requisite for disease control in wildlife and that ASF and wild boar should be monitored in an integrated way, considering the changes in the host population as well as the spatial spread and temporal distribution of disease indicators, to make possible a critical assessment of the impact of interventions. The main body of the manuscript reviews the intervention options and ASF control attempts and their outcomes in different epidemiological situations from peacetime to endemicity. Current ASF control in wild boar relies on three essential tools: carcass destruction, wild boar culling, and fencing. The experience gained since the onset of the ongoing ASF pandemic shows that certain combinations of interventions can slow down ASF spread and eventually succeed in ASF eradication in wild boar, at least after point introductions. Several strengths and weaknesses of these strategies are identified.
Similar content being viewed by others
Data Availability
All data used are already included in this manuscript.
References
Acevedo P, Vicente J, Höfle U, Cassinello J, Ruiz-Fons F, Gortazar C (2007) Estimation of European wild boar relative abundance and aggregation: a novel method in epidemiological risk assessment. Epidemiol Infect 135(03):519. https://doi.org/10.1017/S0950268806007059
Allepuz A, Hovari M, Masiulis M, Ciaravino G, Beltrán-Alcrudo D (2022) Targeting the search of African swine fever-infected wild boar carcasses: a tool for early detection. Transbound Emerg Dis. https://doi.org/10.1111/tbed.14504
Anderson EC, Hutchings GH, Mukarati N, Wilkinson PJ (1998) African swine fever virus infection of the bushpig (Potamochoerus porcus)and its significance in the epidemiology of the disease. Vet Microbiol 62(1):1–15. https://doi.org/10.1016/S0378-1135(98)00187-4
Arksey H, O’Malley L (2005) Scoping studies: towards a methodological framework. Int J Soc Res Methodol 8(1):19–32. https://doi.org/10.1080/1364557032000119616
Armstrong R, Hall BJ, Doyle J, Waters E (2011) “Scoping the scope” of a Cochrane review. J Public Health 33(1):147–150. https://doi.org/10.1093/pubmed/fdr015
Arsevska E, Valentin S, Rabatel J, De Goër de Hervé J, Lancelot R, Roche M (2018) Web monitoring of emerging animal infectious diseases integrated in the French Animal Health Epidemic Intelligence System. PLoS ONE 13(8):e0199960. https://doi.org/10.1371/journal.pone.0199960
Aschim RA (2022) An interdisciplinary approach to mapping and modelling resource selection and the rapid spread of invasive wild pigs (Sus scrofa) at the northern extent of their introduced range. University of Saskatchewan
Baber DW, Coblentz BE (1986) Density, home range, habitat use, and reproduction in feral pigs on Santa Catalina Island. J Mammal 67(3):512–525. https://doi.org/10.2307/1381283
Barasona JA, Acevedo P, Diez-Delgado I, Queiros J, Carrasco-García R, Gortazar C, Vicente J (2016) Tuberculosis-associated death among adult wild boars, Spain, 2009–2014. Emerg Infect Dis 22(12):2178–2180. https://doi.org/10.3201/eid2212.160677
Barasona JA, Cecilia M, Acevedo P, Armenteros JA, Latham ADM, Gortázar C, Carro F, Soriguer RC, Vicente J (2014) Spatiotemporal interactions between wild boar and cattle: implications for cross-species disease transmission. Vet Microbiol 45(122). https://doi.org/10.1186/s13567-014-0122-722-7
Barasona JA, Carpio A, Boadella M, Gortazar C, Piñeiro X, Zumalacárregui C, Vicente J, Viñuela J (2021) Expansion of native wild boar populations is a new threat for semi-arid wetland areas. Ecol Indic 125:107563. https://doi.org/10.1016/j.ecolind.2021.107563
Barrios-Garcia MN, Ballari SA (2012) Impact of wild boar (Sus scrofa) in its introduced and native range: a review. Biol Invasions 14(11):2283–2300. https://doi.org/10.1007/s10530-012-0229-6
Barroso P, Barasona JA, Acevedo P, Palencia P, Carro F, Negro JJ, Torres MJ, Gortázar C, Soriguer RC, Vicente J (2020) Long-term determinants of tuberculosis in the ungulate host community of Doñana national park. Pathogens 9(6). https://doi.org/10.3390/pathogens9060445
Barroso P, Relimpio D, Zearra JA, Cerón JJ, Palencia P, Cardoso B, Gortázar C (2023) Using integrated wildlife monitoring to prevent future pandemics through one health approach. One Health 100479. https://doi.org/10.1016/j.onehlt.2022.100479
Beasley JC, Ditchkoff SS, Mayer JJ, Smith MD, Vercauteren KC (2018) Research priorities for managing invasive wild pigs in North America. J Wildl Manag 82(4):674–681. https://doi.org/10.1002/jwmg.21436
Beasley JC, Clontz LM, Rakowski A, Snow NP, VerCauteren KC (2021) Evaluation of a warfarin bait for controlling invasive wild pigs (Sus scrofa). Pest Manag Sci 77(7):3057–3067. https://doi.org/10.1002/ps.6351
Bergmann H, Schulz K, Conraths FJ, Sauter-Louis C (2021) A review of environmental risk factors for African swine fever in European wild boar. Animals 11(9):2692. https://doi.org/10.3390/ani11092692
Bieber C, Ruf T (2005) Population dynamics in wild boar Sus scrofa: ecology, elasticity of growth rate and implications for the management of pulsed resource consumers. J Appl Ecol 42(6):1203–1213. https://doi.org/10.1111/j.1365-2664.2005.01094.x
Blome S, Goller K, Petrov A, Dräger C, Pietschmann J, Beer M (2014) Alternative sampling strategies for passive classical and African swine fever surveillance in wild boar – extension towards African swine fever virus antibody detection. Vet Microbiol 174(3–4):607–608. https://doi.org/10.1016/j.vetmic.2014.09.018
Blome S, Franzke K, Beer M (2020) African swine fever – a review of current knowledge. Virus Res 287:198099. https://doi.org/10.1016/j.virusres.2020.198099
Bollen M, Neyens T, Fajgenblat M, de Waele V, Licoppe A, Manet B, Casaer J, Beenaerts N (2021) Managing African swine fever: assessing the potential of camera traps in monitoring wild boar occupancy trends in infected and non-infected zones, using spatio-temporal statistical models. Front Vet Sci 8. https://doi.org/10.3389/fvets.2021.726117
Bosch J, Rodríguez A, Iglesias I, Muñoz MJ, Jurado C, Sánchez-Vizcaíno JM, de la Torre A (2017) Update on the risk of introduction of African swine fever by wild boar into disease-free European Union countries. Transbound Emerg Dis 64(5):1424–1432. https://doi.org/10.1111/tbed.12527
Bragina EV, Ives AR, Pidgeon AM, Kuemmerle T, Baskin LM, Gubar YP, Piquer-Rodríguez M, Keuler NS, Petrosyan VG, Radeloff VC (2015) Rapid declines of large mammal populations after the collapse of the Soviet Union. Conserv Biol 29(3):844–853. https://doi.org/10.1111/cobi.12450
Brellou GD, Tassis PD, Apostolopoulou EP, Fortomaris PD, Leontides LS, Papadopoulos GA, Tzika ED (2021) Report on the first African swine fever case in Greece. Vet Sci 8(8):163. https://doi.org/10.3390/vetsci8080163
Brook RK, van Beest FM (2014) Feral wild boar distribution and perceptions of risk on the central Canadian prairies. Wildl Soc Bull 38(3):486–494. https://doi.org/10.1002/wsb.424
Cano-Terriza D, Risalde MA, Jiménez-Ruiz S, Vicente J, Isla J, Paniagua J, Moreno I, Gortázar C, Infantes-Lorenzo JA, García-Bocanegra I (2018) Management of hunting waste as control measure for tuberculosis in wild ungulates in south-central Spain. Transbound Emerg Dis 65(5):1190–1196. https://doi.org/10.1111/tbed.12857
Cappai S, Rolesu S, Feliziani F, Desini P, Guberti V, Loi F (2020) Standardized methodology for target surveillance against African swine fever. Vaccines 8(4):723. https://doi.org/10.3390/vaccines8040723
Cardoso B, García-Bocanegra I, Acevedo P, Cáceres G, Alves PC, Gortázar C (2022) Stepping up from wildlife disease surveillance to integrated wildlife monitoring in Europe. Res Vet Sci 144:149–156. https://doi.org/10.1016/j.rvsc.2021.11.003
Castillo-Contreras R, Carvalho J, Serrano E, Mentaberre G, Fernández-Aguilar X, Colom A, González-Crespo C, Lavín S, López-Olvera JR (2018) Urban wild boars prefer fragmented areas with food resources near natural corridors. Sci Total Environ 615:282–288. https://doi.org/10.1016/j.scitotenv.2017.09.277
Castillo-Contreras R, Mentaberre G, Aguilar XF, Conejero C, Colom-Cadena A, Ráez-Bravo A, López-Olvera JR (2021) Wild boar in the city: phenotypic responses to urbanisation. Sci Total Environ 773
Chenais E, Depner K, Guberti V, Dietze K, Viltrop A, Ståhl K (2019) Epidemiological considerations on African swine fever in Europe 2014–2018. Porcine Health Manage 5(1):6. https://doi.org/10.1186/s40813-018-0109-2
Croft S, Massei G, Smith GC, Fouracre D, Aegerter JN (2020) Modelling spatial and temporal patterns of African swine fever in an isolated wild boar population to support decision-making. Front Vet Sci 7. https://doi.org/10.3389/fvets.2020.00154
Cukor J, Linda R, Mahlerová K, Vacek Z, Faltusová M, Marada P, Havránek F, Hart V (2021) Different patterns of human activities in nature during Covid-19 pandemic and African swine fever outbreak confirm direct impact on wildlife disruption. Sci Rep 11(1):20791. https://doi.org/10.1038/s41598-021-99862-0
Cukor J, Linda R, Václavek P, Kunca T, Havránek F (2020) Wild boar deathbed choice in relation to ASF: are there any differences between positive and negative carcasses? Prev Vet Med 177:104943
de Carvalho Ferreira HC, Weesendorp E, Quak S, Stegeman JA, Loeffen WLA (2014) Suitability of faeces and tissue samples as a basis for non-invasive sampling for African swine fever in wild boar. Vet Microbiol 172(3–4):449–454. https://doi.org/10.1016/j.vetmic.2014.06.016
Dellicour S, Desmecht D, Paternostre J, Malengreaux C, Licoppe A, Gilbert M, Linden A (2020) Unravelling the dispersal dynamics and ecological drivers of the African swine fever outbreak in Belgium. J Appl Ecol 57(8):1619–1629. https://doi.org/10.1111/1365-2664.13649
Desvaux S, Urbaniak C, Petit T, Chaigneau P, Gerbier G, Decors A, Reveillaud E, Chollet J-Y, Petit G, Faure E, Rossi S (2021) How to strengthen wildlife surveillance to support freedom from disease: example of asf surveillance in France, at the border with an infected area. Front Vet Sci 8. https://doi.org/10.3389/fvets.2021.647439
Dixon LK, Stahl K, Jori F, Vial L, Pfeiffer DU (2020) African swine fever epidemiology and control. Annu Rev Anim Biosci 8:221–246. https://doi.org/10.1146/annurev-animal-021419-083741
EFSA (2014) Scientific opinion on African swine fever. EFSA J 12(4). https://doi.org/10.2903/j.efsa.2014.3628
EFSA Ahaw Panel (EFSA Panel on Animal Health and Welfare) (2015) Scientific opinion on African swine fever. EFSA J 13(7):4163, 92 pp. https://doi.org/10.2903/j.efsa.2015.4163
EFSA, Depner K, Gortazar C, Guberti V, Masiulis M, More S, Oļševskis E, Thulke H, Viltrop A, Woźniakowski G, Cortiñas Abrahantes J, Gogin A, Verdonck F, Dhollander S (2017) Epidemiological analyses of African swine fever in the Baltic States and Poland. EFSA J 15(11). https://doi.org/10.2903/j.efsa.2017.5068
EFSA AHAW Panel (EFSA Panel on Animal Health and Welfare), More S, Miranda MA, Bicout D, Bøtner A, Butterworth A, Calistri P, Edwards S, Garin-Bastuji B, Good M, Michel V, Raj M, Saxmose Nielsen S, Sihvonen L, Spoolder H, Stegeman JA, Velarde A, Willeberg P, Winckler C, Depner K, Guberti V, Masiulis M, Olsevskis E, Satran P, Spiridon M, Thulke H-H, Vilrop A, Wozniakowski G, Bau A, Broglia A, Cortinas Abrahantes J, Dhollander S, Gogin A, Munoz Gajardo I, Verdonck F, Amato Land Gortazar Schmidt C (2018a) Scientific opinion on the African swine fever in wild boar. EFSA J 2018;16(7):5344 78 pp. https://doi.org/10.2903/j.efsa.2018.5344
EFSA, Boklund A, Cay B, Depner K, Földi Z, Guberti V, Masiulis M, Miteva A, More S, Olsevskis E, Šatrán P, Spiridon M, Stahl K, Thulke H, Viltrop A, Wozniakowski G, Broglia A, Cortinas Abrahantes J, Dhollander S, Gortázar C (2018b) Epidemiological analyses of African swine fever in the European Union (November 2017 until November 2018). EFSA J 16(11). https://doi.org/10.2903/j.efsa.2018.5494
EFSA, Álvarez J, Bicout D, Boklund A, Bøtner A, Depner K, More SJ, Roberts H, Stahl K, Thulke H, Viltrop A, Antoniou S, Cortiñas Abrahantes J, Dhollander S, Gogin A, Papanikolaou A, van der Stede Y, González Villeta LC, Gortázar Schmidt C (2019) Research gap analysis on African swine fever. EFSA J 17(8). https://doi.org/10.2903/j.efsa.2019.5811
EFSA, Anette B, Anette B, Theodora CV, Klaus D, Daniel D, Vittorio G, Georgina H, Daniela K, Annick L, Aleksandra M, Simon M, Edvins O, Sasa O, Helen R, Mihaela S, Karl S, Hans-Hermann T, Grigaliuniene V, Christian GS (2020a) Epidemiological analyses of African swine fever in the European Union (November 2018 to October 2019). EFSA J 18(1). https://doi.org/10.2903/j.efsa.2020.5996
EFSA, Desmecht D, Gerbier G, GortazarSchmidt C, Grigaliuniene V, Helyes G, Kantere M, Korytarova D, Linden A, Miteva A, Neghirla I, Olsevskis E, Ostojic S, Petit T, Staubach C, Thulke H-H, Viltrop A, Richard W, Wozniakowski G, Abrahantes Cortinas J, Broglia A, Dhollander S, Lima E, Papanikolaou A, Van der Stede Y, Stahl K (2021a) Scientific opinion on the epidemiological analysis of African swine fever in the European Union (September 2019 to August 2020). EFSA J 2021;19(5):6572, 101 pp. https://doi.org/10.2903/j.efsa.2021.6572
EFSA Ahaw Panel (EFSA Panel on Animal Health and Welfare), Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Depner K, Drewe JA, Garin-Bastuji B, Gonzales Rojas JL, Gortazar Schmidt C, Herskin M, Michel V, Miranda Chueca MA, Pasquali P, Roberts HC, Sihvonen LH, Spoolder H, Stahl K, Velarde A, Viltrop A, Winckler C, De Clercq K, Klement E, Stegeman JA, Gubbins S, Antoniou S-E, Broglia A, Van der Stede Y, Zancanaro G, Aznar I (2021b) Scientific opinion on the assessment of the control measures of the category A diseases of Animal Health Law: African swine fever. EFSA J 2021;19(1):6402, 82 pp. https://doi.org/10.2903/j.efsa.2021.6402
EFSA, Nielsen SS, Alvarez J, Bicout DJ, CalistriP, Depner K, Drewe JA, Garin-Bastuji B, Gonzales Rojas JL, Gortazar Schmidt C, Herskin M, Michel V, Miranda Chueca MA, Pasquali P, Roberts HC, Sihvonen LH, Spoolder H, Stahl K, Velarde A, Winckler C, Abrahantes JC, Dhollander S, Ivanciu C, Papanikolaou A, Van der Stede Y, Blome S, Guberti V, Loi F,More S, Olsevskis E, Thulke HH, Viltrop A (2021c) ASF exit strategy: providing cumulative evidence of the absence of African swine fever virus circulation in wild boar populations using standard surveillance measures. EFSA J 2021:19(3):6419, 72 pp. https://doi.org/10.2903/j.efsa.2021.6419
EFSA, Vicente Baños J, Boklund A, Gogin A, Gortázar C, Guberti V, Helyes G, Kantere M, Korytarova D, Linden A, Masiulis M, Miteva A, Neghirla I, Oļševskis E, Ostojic S, Petr S, Staubach C, Thulke H, Viltrop A, Ståhl K (2022) Epidemiological analyses of African swine fever in the European Union. EFSA J 20(5). https://doi.org/10.2903/j.efsa.2022.7290
Emond P, Bréda C, Denayer D (2021) Doing the “dirty work”: how hunters were enlisted in sanitary rituals and wild boars destruction to fight Belgium’s ASF (African Swine Fever) outbreak. Anthropozoologica 56(6). https://doi.org/10.5252/anthropozoologica2021v56a6
ENETWILD-consortium, Vicente J, Palencia P, Plhal R, Blanco-Aguiar JA, Laguna E, Soriguer R, López JF, Podgórski T, Petrović K, Apollonio M, Scandura M, Ferroglio E, Zanet S, Brivio F, Keuling O, Smith GC, Guibert M, Villanúa D, Acevedo P (2019) Harmonization of the use of hunting statistics for wild boar density estimation in different study areas. EFSA Supporting Publ 16(9). https://doi.org/10.2903/sp.efsa.2019.EN-1706
ENETWILD‐consortium, Illanas S, Croft S, Smith GC, Fernández‐López J, Vicente J, Acevedo P (2021) Update of model for wild boar abundance based on hunting yield and first models based on occurrence for wild ruminants at European scale. EFSA Supporting Publ 18(8):6825E. https://doi.org/10.2903/sp.efsa.2021.EN-6825
ENETWILD-consortium, Pascual‐Rico R, Acevedo P, Apollonio M, Blanco‐Aguiar J, Body G, Del Rio L, Ferroglio E, Gomez A, Keuling O, Plis K, Podgórski T (2022a) Wild boar ecology: a review of wild boar ecological and demographic parameters by bioregion all over Europe. EFSA Supporting Publ 19(3). https://doi.org/10.2903/sp.efsa.2022.EN-7211
ENETWILD-consortium, Acevedo P, Aleksovski V, Apollonio M, Berdión O, Blanco-Aguiar J, del Rio L, Ertürk A, Fajdiga L, Escribano F, Ferroglio E, Gruychev G, Gutiérrez I, Häberlein V, Hoxha B, Kavčić K, Keuling O, Martínez-Carrasco C, Palencia P, Vicente J (2022) Wild boar density data generated by camera trapping in nineteen European areas. EFSA Supporting Publ 19(3). https://doi.org/10.2903/sp.efsa.2022.EN-7214
Fekede RJ, HaoNing W, Hein VG, XiaoLong W (2021) Could wild boar be the Trans-Siberian transmitter of African swine fever? Transbound Emerg Dis 68(3):1465–1475. https://doi.org/10.1111/tbed.13814
Fernández-López J, Blanco-Aguiar JA, Vicente J, Acevedo P (2022) Can we model distribution of population abundance from wildlife–vehicles collision data? Ecography. https://doi.org/10.1111/ecog.06113
Fonseca C, da Silva AA, Alves J, Vingada J, Soares AMVM (2011) Reproductive performance of wild boar females in Portugal. Eur J Wildl Res 57(2):363–371
Forth JH, Forth LF, Lycett S, Bell-Sakyi L, Keil GM, Blome S, Calvignac-Spencer S, Wissgott A, Krause J, Höper D, Kampen H, Beer M (2020) Identification of African swine fever virus-like elements in the soft tick genome provides insights into the virus’ evolution. BMC Biol 18(1):136. https://doi.org/10.1186/s12915-020-00865-6
Frant M, Gal A, Bocian Ł, Ziętek-Barszcz A, Niemczuk K, Woźniakowski G (2021a) African swine fever virus (ASFV) in Poland in 2019—wild boars: searching pattern. Agriculture 11(1):45. https://doi.org/10.3390/agriculture11010045
Frant MP, Gal-Cisoń A, Bocian Ł, Ziętek-Barszcz A, Niemczuk K, Woźniakowski G, Szczotka-Bochniarz A (2021b) African swine fever in wild boar (Poland 2020): passive and active surveillance analysis and further perspectives. Pathogens 10(9):1219. https://doi.org/10.3390/pathogens10091219
Geisser H, Reyer HU (2004) Efficacy of hunting, feeding, and fencing to reduce crop damage by wild boars. 68(4):939–946
Gervasi V, Guberti V (2021) African swine fever endemic persistence in wild boar populations: key mechanisms explored through modelling. Transbound Emerg Dis 68(5):2812–2825. https://doi.org/10.1111/tbed.14194
González-Crespo C, Serrano E, Cahill S, Castillo-Contreras R, Cabañeros L, López-Martín JM, Roldán J, Lavín S, López-Olvera JR (2018) Stochastic assessment of management strategies for a Mediterranean peri-urban wild boar population. PLoS ONE 13(8):e0202289. https://doi.org/10.1371/journal.pone.0202289
Gortázar C, Acevedo P, Ruiz-Fons F, Vicente J (2006) Disease risks and overabundance of game species. Eur J Wildl Res 52(2):81–87. https://doi.org/10.1007/s10344-005-0022-2
Gortázar C, Che Amat A, O’Brien DJ (2015) Open questions and recent advances in the control of a multi-host infectious disease: animal tuberculosis. Mammal Rev 45(3):160–175. https://doi.org/10.1111/mam.12042
Gortázar C, Fernandez-de-Simon J (2022) One tool in the box: the role of hunters in mitigating the damages associated to abundant wildlife. Eur J Wildl Res 68(3):28. https://doi.org/10.1007/s10344-022-01578-7
Griciuvienė L, Janeliūnas Ž, Jurgelevičius V, Paulauskas A (2021) The effects of habitat fragmentation on the genetic structure of wild boar (Sus scrofa) population in Lithuania. BMC Genomic Data 22(1):53. https://doi.org/10.1186/s12863-021-01008-8
Guberti V, Khomenko S, Masiulis M, & Kerba S. (2019) African swine fever in wild boar ecology and biosecurity. FAO
Guinat C, Vergne T, Jurado-Diaz C, Sánchez-Vizcaíno JM, Dixon L, Pfeiffer DU (2017) Effectiveness and practicality of control strategies for African swine fever: what do we really know? Vet Rec 180(4):97–97. https://doi.org/10.1136/vr.103992
Han J, Yoo D, Pak S, Kim E (2021) Understanding the transmission of African swine fever in wild boars of South Korea: a simulation study for parameter estimation. Transbound Emerg Dis. https://doi.org/10.1111/tbed.14403
Haresnape JM, Wilkinson PJ, Mellor PS (1988) Isolation of African swine fever virus from ticks of the Ornithodoros moubata complex (Ixodoidea: Argasidae) collected within the African swine fever enzootic area of Malawi. Epidemiol Infect 101(1):173–185. https://doi.org/10.1017/S0950268800029332
Havránek F, Marada P, Pospósilová M (2020) Use of dogs with electronic tracking equipment for searching for the carcasses of wild boars. zpravy lesnickeho vyzkumu 65(4):297–307.
Herm R, Kirik H, Vilem A, Zani L, Forth JH, Müller A, Michelitsch A, Wernike K, Werner D, Tummeleht L, Kampen H, Viltrop A (2021) No evidence for African swine fever virus DNA in haematophagous arthropods collected at wild boar baiting sites in Estonia. Transbound Emerg Dis 68(5):2696–2702. https://doi.org/10.1111/tbed.14013
Heuschele WP, Coggins L (1965) Isolation of African swine fever virus from a giant forest hog. Bulletin of Epizootic Diseases of Africa. Bulletin Des Epizooties En Afrique 13(3):255–256
Iacolina L, Penrith ML, Bellini S, Chenais E, Jori F, Montoya M, ... & Gavier-Widén D. (Eds.). (2021) Understanding and combatting African swine fever: a European perspective. Wageningen Academic Publishers. https://doi.org/10.3920/978-90-8686-910-7
Iscaro C, Dondo A, Ruocco L, Masoero L, Giammarioli M, Zoppi S, Guberti V, Feliziani F (2022) January 2022: index case of new African swine fever incursion in mainland Italy. Transbound Emerg Dis. https://doi.org/10.1111/tbed.14584
Jerina K, Pokorny B, Stergar M (2014) First evidence of long-distance dispersal of adult female wild boar (Sus scrofa) with piglets. Eur J Wildl Res 60(2):367–370. https://doi.org/10.1007/s10344-014-0796-1
Ježek M, Holá M, Kušta T, Červený J (2016) Creeping into a wild boar stomach to find traces of supplementary feeding. Wildl Res 43(7):590. https://doi.org/10.1071/WR16065
Jiménez J, Higuero R, Charre-Medellin JF, Acevedo P (2017) Spatial mark-resight models to estimate feral pig population density. Hystrix Italian J Mammal 28(2):208–213. https://doi.org/10.4404/hystrix
Jiménez-Ruiz S, Laguna E, Vicente J, García-Bocanegra I, Martínez-Guijosa J, Cano-Terriza D, Risalde MA, Acevedo P (2022) Characterization and management of interaction risks between livestock and wild ungulates on outdoor pig farms in Spain. Porcine Health Manage 8(1):2. https://doi.org/10.1186/s40813-021-00246-7
Jo Y, Gortázar C (2020) African swine fever in wild boar, South Korea, 2019. Transbound Emerg Dis tbed.13532. https://doi.org/10.1111/tbed.13532
Jo Y, Gortázar C (2021) African swine fever in wild boar: assessing interventions in South Korea. Transbound Emerg Dis 68(5):2878–2889. https://doi.org/10.1111/tbed.14106
Johann F, Handschuh M, Linderoth P, Dormann CF, Arnold J (2020) Adaptation of wild boar (Sus scrofa) activity in a human-dominated landscape. BMC Ecol 20(1):4. https://doi.org/10.1186/s12898-019-0271-7
Jori F, Bastos ADS (2009) Role of wild suids in the epidemiology of African swine fever. EcoHealth 6(2):296–310. https://doi.org/10.1007/s10393-009-0248-7
Jori F, Chenais E, Boinas F, Busauskas P, Dholllander S, Fleischmann L, Olsevskis E, Rijks JM, Schulz K, Thulke HH, Viltrop A, Stahl K (2020) Application of the World Café method to discuss the efficiency of African swine fever control strategies in European wild boar (Sus scrofa) populations. Prev Vet Med 185:105178. https://doi.org/10.1016/j.prevetmed.2020.105178
Kemenszky P, Jánoska F, Nagy G, Csivincsik Á (2022) The golden jackal (Canis aureus) and the African swine fever pandemic: its role is controversial but not negligible (a diet analysis study). Vet Med Sci 8(1):97–103. https://doi.org/10.1002/vms3.636
Keuling O, Lauterbach K, Stier N, Roth M (2010) Hunter feedback of individually marked wild boar Sus scrofa L.: dispersal and efficiency of hunting in northeastern Germany. Eur J Wildl Res 56(2):159–167. https://doi.org/10.1007/s10344-009-0296-x
Keuling O, Baubet E, Duscher A, Ebert C, Fischer C, Monaco A, Podgórski T, Prevot C, Ronnenberg K, Sodeikat G, Stier N, Thurfjell H (2013) Mortality rates of wild boar Sus scrofa L. in central Europe. Eur J Wildl Res 59(6):805–814. https://doi.org/10.1007/s10344-013-0733-8
Keuling O, Strauß E, Siebert U (2016) Regulating wild boar populations is “somebody else’s problem”! - Human dimension in wild boar management. Sci Total Environ 554–555:311–319. https://doi.org/10.1016/j.scitotenv.2016.02.159
Klich D, Sobczuk M, Basak SM, Wierzbowska IA, Tallian A, Hędrzak M, Popczyk B, Żoch K (2021) Predation on livestock as an indicator of drastic prey decline? The indirect effects of an African swine fever epidemic on predator–prey relations in Poland. Ecol Indic 133:108419. https://doi.org/10.1016/j.ecolind.2021.108419
Kosowska A, Barasona JA, Barroso-Arévalo S, Rivera B, Domínguez L, Sánchez-Vizcaíno JM (2021) A new method for sampling African swine fever virus genome and its inactivation in environmental samples. Sci Rep 11(1):21560. https://doi.org/10.1038/s41598-021-00552-8
Laguna E, Barasona JA, Vicente J, Keuling O, Acevedo P (2021) Differences in wild boar spatial behaviour among land uses and management scenarios in Mediterranean ecosystems. Sci Total Environ 796:148966. https://doi.org/10.1016/j.scitotenv.2021.148966
Laguna E, Barasona JA, Carpio AJ, Vicente J, Acevedo P (2022) Permeability of artificial barriers (fences) for wild boar (Sus scrofa) in Mediterranean mixed landscapes. Pest Manag Sci. https://doi.org/10.1002/ps.6853
Lawson B, Neimanis A, Lavazza A, López-Olvera JR, Tavernier P, Billinis C, Kuiken T (2021) How to start up a national wildlife health surveillance programme. Animals 11(9):2543. https://doi.org/10.3390/ani11092543
Lewis AA, Williams BL, Smith MD, Ditchkoff SS (2022) Shifting to sounders: whole sounder removal eliminates wild pigs. Wild Soc Bull 46(1). https://doi.org/10.1002/wsb.1260
Licoppe A, De Waele V, Malengreaux C, Paternostre J, Van Goethem A, Desmecht D, Linden A (2023) Management of a focal introduction of ASF virus in wild boar: the Belgian experience. Pathogens 12(2):152. https://doi.org/10.3390/pathogens12020152
Lim J-S, Vergne T, Pak S-I, Kim E (2021) Modelling the spatial distribution of ASF-positive wild boar carcasses in South Korea using 2019–2020 national surveillance data. Animals 11(5):1208. https://doi.org/10.3390/ani11051208
Lim, J. S., Andraud, M., Kim, E., & Vergne, T. (2023) Three years of African swine fever in South Korea (2019–2021): a scoping review of epidemiological understanding. Transbound Emerg Dis 2023. https://doi.org/10.1155/2023/4686980
Linden A, Licoppe A, Volpe R, Paternostre J, Lesenfants C, Cassart D, Garigliany M, Tignon M, van den Berg T, Desmecht D, Cay AB (2019) Summer 2018: African swine fever virus hits north-western Europe. Transbound Emerg Dis 66(1):54–55. https://doi.org/10.1111/tbed.13047
Lizana V, Muniesa A, Cardells J, López-Ramon J, Aguiló-Gisbert J, Lomillos JM, Gortázar C (2022) Safe game: hygienic habits in self-consumption of game meat in eastern Spain. Foods 11(3):368. https://doi.org/10.3390/foods11030368
Loi F, Cappai S, Coccollone A, Rolesu S (2019) Standardized risk analysis approach aimed to evaluate the last African swine fever eradication program performance, in Sardinia. Front Vet Sci 6. https://doi.org/10.3389/fvets.2019.00299
Martínez-Avilés M, Iglesias I, de La Torre A (2020) Evolution of the ASF infection stage in wild boar within the EU (2014–2018). Front Vet Sci 7. https://doi.org/10.3389/fvets.2020.00155
Massei G, Kindberg J, Licoppe A, Gačić D, Šprem N, Kamler J, Baubet E, Hohmann U, Monaco A, Ozoliņš J, Cellina S, Podgórski T, Fonseca C, Markov N, Pokorny B, Rosell C, Náhlik A (2015) Wild boar populations up, numbers of hunters down? A review of trends and implications for Europe. Pest Manag Sci 71(4):492–500. https://doi.org/10.1002/ps.3965
Mazzamuto MV, Schilling A-K, Romeo C (2022) Wildlife disease monitoring: methods and perspectives. Animals 12(21):3032
Michel NL, Laforge MP, van Beest FM, Brook RK (2017) Spatiotemporal trends in Canadian domestic wild boar production and habitat predict wild pig distribution. Landsc Urban Plan 165:30–38. https://doi.org/10.1016/j.landurbplan.2017.05.003
Miller RS, Farnsworth ML, Malmberg JL (2013) Diseases at the livestock–wildlife interface: status, challenges, and opportunities in the United States. Prev Vet Med 110(2):119–132. https://doi.org/10.1016/j.prevetmed.2012.11.021
Montgomery RE (1921) On a form of swine fever occurring in British East Africa (Kenya Colony). J Comp Pathol Ther 34:159–191
Morelle K, Jezek M, Licoppe A, Podgorski T (2019) Deathbed choice by ASF-infected wild boar can help find carcasses. Transbound Emerg Dis 66(5):1821–1826. https://doi.org/10.1111/tbed.13267
Morelle K, Bubnicki J, Churski M, Gryz J, Podgórski T, Kuijper DPJ (2020) Disease-induced mortality outweighs hunting in causing wild boar population crash after African swine fever outbreak. Front Vet Sci 7. https://doi.org/10.3389/fvets.2020.00378
Mulumba‐Mfumu LK, Saegerman C, Dixon LK, Madimba KC, Kazadi E, Mukalakata NT, Oura CA, Chenais E, Masembe C, Ståhl K, Thiry E, Penrith ML (2019) African swine fever: update on eastern, central and southern Africa. Transbound Emerg Dis tbed.13187. https://doi.org/10.1111/tbed.13187
Munn Z, Peters MDJ, Stern C, Tufanaru C, McArthur A, Aromataris E (2018) Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Med Res Methodol 18(1):143. https://doi.org/10.1186/s12874-018-0611-x
Mur L, Boadella M, Martínez-López B, Gallardo C, Gortazar C, Sánchez-Vizcaíno JM (2012) Monitoring of African swine fever in the wild boar population of the most recent endemic area of Spain. Transbound Emerg Dis 59(6):526–531. https://doi.org/10.1111/j.1865-1682.2012.01308.x
Mysterud A, Rolandsen CM (2019) Fencing for wildlife disease control. J Appl Ecol 56(3):519–525. https://doi.org/10.1111/1365-2664.13301
O’Neill X, White A, Ruiz-Fons F, Gortázar C (2020) Modelling the transmission and persistence of African swine fever in wild boar in contrasting European scenarios. Sci Rep 10(1):5895. https://doi.org/10.1038/s41598-020-62736-y
OIE (2021) World Animal Health Information System 2005 - 2021 (query panel). In: Information Department [online]. París. Visited on July 20th, 2022
Olesen AS, Lohse L, Hansen MF, Boklund A, Halasa T, Belsham GJ, Rasmussen TB, Bøtner A, Bødker R (2018) Infection of pigs with African swine fever virus via ingestion of stable flies (Stomoxys calcitrans). Transbound Emerg Dis 65(5):1152–1157. https://doi.org/10.1111/tbed.12918
Oļševskis E, Schulz K, Staubach C, Seržants M, Lamberga K, Pūle D, Ozoliņš J, Conraths FJ, Sauter-Louis C (2020) African swine fever in Latvian wild boar—a step closer to elimination. Transbound Emerg Dis 67(6):2615–2629. https://doi.org/10.1111/tbed.13611
Palencia P, Fernández-López J, Vicente J, Acevedo P (2021a) Innovations in movement and behavioural ecology from camera traps: day range as model parameter. Methods Ecol Evol 12(7):1201–1212. https://doi.org/10.1111/2041-210X.13609
Palencia P, Rowcliffe JM, Vicente J, Acevedo P (2021b) Assessing the camera trap methodologies used to estimate density of unmarked populations. J Appl Ecol 58(8):1583–1592. https://doi.org/10.1111/1365-2664.13913
Palencia P, Vada R, Zanet S, Calvini M, De Giovanni A, Gola G, Ferroglio E (2023) Not just pictures: utility of camera trapping in the context of African swine fever and wild boar management. Transbound Emerg Dis 2023. https://doi.org/10.1155/2023/7820538
Penrith M, Bastos AD, Etter EMC, Beltrán-Alcrudo D (2019) Epidemiology of African swine fever in Africa today: sylvatic cycle versus socio-economic imperatives. Transbound Emerg Dis 66(2):672–686. https://doi.org/10.1111/tbed.13117
Pepin KM, Golnar AJ, Abdo Z, Podgórski T (2020) Ecological drivers of African swine fever virus persistence in wild boar populations: insight for control. Ecol Evol 10(6):2846–2859. https://doi.org/10.1002/ece3.6100
Pepin KM, Golnar A, Podgórski T (2021) Social structure defines spatial transmission of African swine fever in wild boar: social structure defines spatial transmission of African swine fever in wild boar. J R Soc Interface 18(174):20200761
Peters MDJ, Godfrey CM, Khalil H, McInerney P, Parker D, Soares CB (2015) Guidance for conducting systematic scoping reviews. Int J Evid Based Healthc 13(3):141–146. https://doi.org/10.1097/XEB.0000000000000050
Petrov A, Schotte U, Pietschmann J, Dräger C, Beer M, Anheyer-Behmenburg H, Goller K, Blome S (2014) Alternative sampling strategies for passive classical and African swine fever surveillance in wild boar. Vet Microbiol 173(3–4):360–365. https://doi.org/10.1016/j.vetmic.2014.07.030
Podgórski T, Śmietanka K (2018) Do wild boar movements drive the spread of African swine fever? Transbound Emerg Dis 65(6):1588–1596. https://doi.org/10.1111/tbed.12910
Podgórski T, Apollonio M, Keuling O (2018) Contact rates in wild boar populations: implications for disease transmission. J Wildl Manag 82(6):1210–1218. https://doi.org/10.1002/jwmg.21480
Podgórski T, Lusseau D, Scandura M, Sönnichsen L, Jędrzejewska B (2014) Long-lasting, kin-directed female interactions in a spatially structured wild boar social network. PLoS ONE 9(6):e99875
Podgórski T, Borowik T, Łyjak M, Woźniakowski G (2020) Spatial epidemiology of African swine fever: host, landscape and anthropogenic drivers of disease occurrence in wild boar. Prev Vet Med 177:104691. https://doi.org/10.1016/j.prevetmed.2019.104691
Probst C, Gethmann J, Amendt J, Lutz L, Teifke JP, Conraths FJ (2020) Estimating the postmortem interval of wild boar carcasses. Vet Sci 7(1):6. https://doi.org/10.3390/vetsci7010006
Probst C, Globig A, Knoll B, Conraths FJ, Depner K (2017) Behaviour of free ranging wild boar towards their dead fellows: potential implications for the transmission of African swine fever. R Soc Open Sci 4(5):170054. https://doi.org/10.1098/rsos.170054
Quirós-Fernández F, Marcos J, Acevedo P, Gortázar C (2017) Hunters serving the ecosystem: the contribution of recreational hunting to wild boar population control. Eur J Wildl Res 63(3):57. https://doi.org/10.1007/s10344-017-1107-4
Reiner G, Rumpel M, Zimmer K, Willems H (2021) Genetic differentiation of wild boar populations in a region endangered by African swine fever. J Wildl Manag 85(3):423–436. https://doi.org/10.1002/jwmg.22015
Risch DR, Ringma J, Price MR (2021) The global impact of wild pigs (Sus scrofa) on terrestrial biodiversity. Sci Rep 11(1):13256. https://doi.org/10.1038/s41598-021-92691-1
Roelandt S, van der Stede Y, D’hondt B, Koenen F (2017) The assessment of African swine fever virus risk to Belgium early 2014, using the quick and semiquantitative Pandora screening protocol. Transbound Emerg Dis 64(1):237–249. https://doi.org/10.1111/tbed.12365
Russo L, Massei G, Genov PV (1997) Daily home range and activity of wild boar in a Mediterranean area free from hunting. Ethol Ecol Evol 9(3):287–294. https://doi.org/10.1080/08927014.1997.9522888
Sáez-royuela C, Tellería JL (1986) The increased population of the wild boar (Sus scrofa L.) in Europe
Sánchez-Cordón PJ, Montoya M, Reis AL, Dixon LK (2018) African swine fever: a re-emerging viral disease threatening the global pig industry. Vet J 233:41–48. https://doi.org/10.1016/j.tvjl.2017.12.025
Sanguinetti J, Pastore H (2016) Abundancia poblacional y manejo del jabalí (Sus scrofa): una revisión global para abordar su gestión en la Argentina. Maztozoología Neotropical 23(2):305–323
Sauter-Louis C, Schulz K, Richter M, Staubach C, Mettenleiter TC, Conraths FJ (2021a) African swine fever: why the situation in Germany is not comparable to that in the Czech Republic or Belgium. Transbound Emerg Dis 69(4):2201–2208. https://doi.org/10.1111/tbed.14231
Sauter-Louis C, Conraths FJ, Probst C, Blohm U, Schulz K, Sehl J, Fischer M, Forth JH, Zani L, Depner K, Mettenleiter TC, Beer M, Blome S (2022) African swine fever in wild boar in Europe—a review. Viruses 13(9):1717. https://doi.org/10.3390/v13091717
Sauter-Louis C, Forth JH, Probst C, Staubach C, Hlinak A, Rudovsky A, Blome S (2021) Joining the club: first detection of African swine fever in wild boar in Germany. Transbound Emerg Dis 68(4):1744–1752. https://doi.org/10.1111/tbed.13890
Schulz K, Conraths FJ, Blome S, Staubach C, Sauter-Louis C (2019) African swine fever: fast and furious or slow and steady? Viruses 11(9):866. https://doi.org/10.3390/v11090866
Schulz K, Conraths FJ, Staubach C, Viltrop A, Oļševskis E, Nurmoja I, Lamberga K, Sauter-Louis C (2020) To sample or not to sample? Detection of African swine fever in wild boar killed in road traffic accidents. Transbound Emerg Dis 67(5):1816–1819. https://doi.org/10.1111/tbed.13560
Schulz K, Masiulis M, Staubach C, Malakauskas A, Pridotkas G, Conraths FJ, Sauter-Louis C (2021) African swine fever and its epidemiological course in Lithuanian wild boar. Viruses 13(7):1276. https://doi.org/10.3390/v13071276
Stončiūtė E, Schulz K, Malakauskas A, Conraths FJ, Masiulis M, Sauter-Louis C (2021) What do Lithuanian hunters think of African swine fever and its control—perceptions. Animals 11(2):525. https://doi.org/10.3390/ani11020525
Sun E, Huang L, Zhang X, Zhang J, Shen D, Zhang Z, Wang Z, Huo H, Wang W, Huangfu H, Wang W, Li F, Liu R, Sun J, Tian Z, Xia W, Guan Y, He X, Zhu Y, Bu Z (2021a) Genotype I African swine fever viruses emerged in domestic pigs in China and caused chronic infection. Emerging Microbes Infect 10(1):2183–2193. https://doi.org/10.1080/22221751.2021.1999779
Sun E, Huang L, Zhang X, Zhao D, Bu Z (2021b) Genotype I African swine fever viruses emerged in domestic pigs in China and caused chronic infection. Emerg Microbes Infect 10(1):2183–2193
Sun E, Zhang Z, Wang Z, He X, Zhang X, Wang L, Wang W, Huang L, Xi F, Huangfu H et al (2021c) Emergence and prevalence of naturally occurring lower virulent African swine fever viruses in domestic pigs in China in 2020. Sci China Life Sci 64:752–765
Szewczyk M, Łepek K, Nowak S, Witek M, Bajcarczyk A, Kurek K, Stachyra P, Mysłajek RW, Szewczyk B (2021) Evaluation of the presence of ASFV in wolf feces collected from areas in Poland with ASFV persistence. Viruses 13(10):2062. https://doi.org/10.3390/v13102062
Tanner E, White A, Acevedo P, Balseiro A, Marcos J, Gortázar C (2019) Wolves contribute to disease control in a multi-host system. Sci Rep 9(1):7940. https://doi.org/10.1038/s41598-019-44148-9
Taylor RA, Condoleo R, Simons RRL, Gale P, Kelly LA, Snary EL (2020) The risk of infection by African swine fever virus in European swine through boar movement and legal trade of pigs and pig meat. Front Vet Sci 6. https://doi.org/10.3389/fvets.2019.00486
Tizzani M, Muñoz-Gómez V, de Nardi M, Paolotti D, Muñoz O, Ceschi P, Viltrop A, Capua I (2021) Integrating digital and field surveillance as complementary efforts to manage epidemic diseases of livestock: African swine fever as a case study. PLoS ONE 16(12):e0252972. https://doi.org/10.1371/journal.pone.0252972
Toïgo C, Servanty S, Gaillard JM, Brandt S, Baubet E (2017) Disentangling natural from hunting mortality in an intensively hunted wild boar population. J Wildl Manag 72(7):1532–1539
Trape J-F, Diatta G, Arnathau C, Bitam I, Sarih M, Belghyti D, Bouattour A, Elguero E, Vial L, Mané Y, Baldé C, Pugnolle F, Chauvancy G, Mahé G, Granjon L, Duplantier J-M, Durand P, Renaud F (2013) The epidemiology and geographic distribution of relapsing fever borreliosis in west and north Africa, with a review of the ornithodoros erraticus complex (Acari: Ixodida). PLoS ONE 8(11):e78473. https://doi.org/10.1371/journal.pone.0078473
Triguero-Ocaña R, Vicente J, Palencia P, Laguna E, Acevedo P (2020) Quantifying wildlife-livestock interactions and their spatio-temporal patterns: is regular grid camera trapping a suitable approach? Ecol Indic 117. https://doi.org/10.1016/j.ecolind.2020.106565
Truvé J, Lemel J (2003) Timing and distance of natal dispersal for wild boar Sus scrofa in Sweden. Wildl Biol 9(s1):51–57. https://doi.org/10.2981/wlb.2003.056
Turčinavičienė J, Petrašiūnas A, Bernotienė R, Masiulis M, Jonušaitis V (2021) The contribution of insects to African swine fever virus dispersal: data from domestic pig farms in Lithuania. Med Vet Entomol 35(3):484–489. https://doi.org/10.1111/mve.12499
Urner N, Mõtus K, Nurmoja I, Schulz J, Sauter-Louis C, Staubach C, Conraths FJ, Schulz K (2020) Hunters’ acceptance of measures against African swine fever in wild boar in Estonia. Prev Vet Med 182:105121. https://doi.org/10.1016/j.prevetmed.2020.105121
Urner N, Sauter-Louis C, Staubach C, Conraths FJ, Schulz K (2021a) A comparison of perceptions of Estonian and Latvian hunters with regard to the control of African swine fever. Front Vet Sci 8. https://doi.org/10.3389/fvets.2021.642126
Urner N, Seržants M, Užule M, Sauter-Louis C, Staubach C, Lamberga K, Oļševskis E, Conraths FJ, Schulz K (2021b) Hunters’ view on the control of African swine fever in wild boar. A participatory study in Latvia. Prev Vet Med 186:105229. https://doi.org/10.1016/j.prevetmed.2020.105229
Vergne T, Korennoy F, Combelles L, Gogin A, Pfeiffer DU (2016) Modelling African swine fever presence and reported abundance in the Russian Federation using national surveillance data from 2007 to 2014. Spatial Spatio-Temporal Epidemiol 19:70–77. https://doi.org/10.1016/j.sste.2016.06.002
Vergne T, Guinat C, Pfeiffer DU (2020) Undetected circulation of African swine fever in wild boar. Asia Emer Infec Dis 26(10):2480–2482. https://doi.org/10.3201/eid2610.200608
Vicente J, Höfle U, Garrido JM, Fernández-de-mera IG, Acevedo P, Juste R, Barral M, Gortazar C (2007) Risk factors associated with the prevalence of tuberculosis-like lesions in fenced wild boar and red deer in south central Spain. Vet Res 38(3):451–464. https://doi.org/10.1051/vetres:2007002
Vicente J, Apollonio M, Blanco-Aguiar JA, Borowik T, Brivio F, Casaer J, Croft S, Ericsson G, Ferroglio E, Gavier-Widen D, Gortázar C, Jansen PA, Keuling O, Kowalczyk R, Petrovic K, Plhal R, Podgórski T, Sange M, Scandura M, Acevedo P (2019) Science-based wildlife disease response. Science 364(6444):943–944. https://doi.org/10.1126/science.aax4310
Vilem A, Nurmoja I, Niine T, Riit T, Nieto R, Viltrop A, Gallardo C (2020) Molecular characterization of African swine fever virus isolates in Estonia in 2014–2019. Pathogens 9(7):582. https://doi.org/10.3390/pathogens9070582
Wobeser G (2002) Disease management strategies for wildlife. Revue scientifique et technique (International Office of Epizootics). 21(1):159–178. https://doi.org/10.20506/rst.21.1.1326
Wormington JD, Golnar A, Poh KC, Kading RC, Martin E, Hamer SA, Hamer GL (2019) Risk of African swine fever virus sylvatic establishment and spillover to domestic swine in the United States. Vector-Borne Zoonotic Dis 19(7):506–511. https://doi.org/10.1089/vbz.2018.2386
Woźniakowski G, Pejsak Z, Jabłoński A (2021) Emergence of African swine fever in Poland (2014–2021). Successes and Failures in Disease Eradication. Agriculture 11(8):738. https://doi.org/10.3390/agriculture11080738
Yang A, Schlichting P, Wight B, Anderson WM, Chinn SM, Wilber MQ, Miller RS, Beasley JC, Boughton RK, VerCauteren KC, Wittemyer G, Pepin KM (2021) Effects of social structure and management on risk of disease establishment in wild pigs. J Anim Ecol 90(4):820–833. https://doi.org/10.1111/1365-2656.13412
Zani L, Forth JH, Forth L, Nurmoja I, Leidenberger S, Henke J, Carlson J, Breidenstein C, Viltrop A, Höper D, Sauter-Louis C, Beer M, Blome S (2018) Deletion at the 5’-end of Estonian ASFV strains associated with an attenuated phenotype. Sci Rep 8(1):6510. https://doi.org/10.1038/s41598-018-24740-1
Acknowledgements
CG acknowledges many expert colleagues and particularly Sofie Dhollander at EFSA for fruitful discussions.
Funding
PP received support from the Università Degli Studi di Torino-Dipartimento di Scienze Veterinarie through contract 8B/2022/VET and from University of Castilla-La Mancha through a Margarita Salas contract (2022-NACIONAL-110053).
Author information
Authors and Affiliations
Contributions
CG conceived the study. PP and CG conducted the review process and managed the writing of the manuscript. SB, RKB, EZ, YSJ, AL, VM, MLP, RP, JV and AV provide a detailed overview of ASF status in their respective countries. All authors contributed critically to the drafts and gave final approval for publication.
Corresponding author
Ethics declarations
Ethics approval
The authors confirm that the ethical policies of the journal, as noted on the journal’s author guidelines page, have been adhered to. No ethical approval was required as this is a review article with no original research data.
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
10344_2023_1696_MOESM2_ESM.docx
Appendix S2: additional tables providing further details about EFSA reports, primary research in African swine fever (ASF), checklist for preparedness in the event of ASF (strengths and weakness). (DOCX 30 KB)
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Palencia, P., Blome, S., Brook, R.K. et al. Tools and opportunities for African swine fever control in wild boar and feral pigs: a review. Eur J Wildl Res 69, 69 (2023). https://doi.org/10.1007/s10344-023-01696-w
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10344-023-01696-w