Skip to main content

Advertisement

Log in

Do porcupines self-medicate? The seasonal consumption of plants with antiparasitic properties coincides with that of parasite infections in Hystrix cristata of Central Italy

  • Original Article
  • Published:
European Journal of Wildlife Research Aims and scope Submit manuscript

Abstract

Dietary selection is an important process for the maintenance of health homeostasis. From the potential food items available in one’s environment, choices must be made to assure a proper balance of nutrients for energy, growth, maintenance, and reproduction. Sometimes, animals select plants also for their medicinal properties. This behaviour constitutes what is called the medicinal diet, and it consists of items with beneficial bioactive properties. In primates and other species investigated so far, it has been found that 15–25% of the plant items consumed have antiparasitic properties. We investigated the dietary habits of three non-overlapping populations of crested porcupine (Hystrix cristata) in Central Italy and identified medicinal food species, their potential antiparasitic benefits, and the seasonality of parasite infections in relation to their ingestion. The three study areas were characterised by contrasting degrees of “natural” and agricultural landscapes. In total, 44 food items were recorded from 43 plant species based on macro- and microscopic faecal analyses (N = 22, 24 spp., respectively) or stomach contents from necropsied roadkill specimens (N = 11 spp.). The dietary variation between groups could be attributed to differences in human land use patterns, affecting the relative accessibility to cultivars and wild growing plants. The relative proportion of plants in the diet with antiparasitic properties varied between study areas 1, 2, and 3, accounting for 72%, 48%, and 27%, respectively. Porcupines were found to be infected by 7 species of ectoparasites (ticks and fleas) and 7 species of endoparasites (strongyle nematode, protozoa, and bacteria) in the cold and rainy months. The consumption of medicinal foods in all three groups coincided with the highest detected prevalence of I. ricinus, P. irritans, P. melis, G. duodenalis, and A. italicus in autumn and winter. This study adds to our general understanding of factors influencing dietary selection and presents the first evidence for a link between medicinal food consumption and parasite infection seasonality in crested porcupines of Europe. Future research is required to ascertain the impact of these parasites on infected hosts, potential modes of action of these medicinal foods on them and the gut microbiota, and host health and nutritional status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbott J (2014) Self-medication in insects: current evidence and future perspectives. Ecol Entom 39:273–280

    Article  Google Scholar 

  • Abd El Alim M, El-Deen GAF (2018) Effect of feeding Helianthus tuberosus (Jerusalem Artichoke) on rations nutritive value and some blood parameters of ossimi rams. Egyptian J Nutrition and Feeds 21:325–331

    Google Scholar 

  • Ancillotto L, Studer V, Howard T, Smith VS, McAlister E, Beccaloni J, Manzia F, Renzopaoli F, Bosso L, Russo D Mori, E (2018) Environmental drivers of parasite load and species richness in introduced parakeets in an urban landscape. Parasitol Res 117:3591–3599

    Article  CAS  Google Scholar 

  • Adnan M, Gul S, Batool S, Fatima B, Rehman A, Yaqoob A, Shabir H, Yousaf T, Mussarat S, Ali N, Khan SN, Rahman H, Aziz MA (2017) A review on the ethnobotany, phytochemistry, pharmacology and nutritional composition of Cucurbita pepo L. J Phytopharmacol 6:133–139

    Article  Google Scholar 

  • Agayeva EZ, Ibadullayeva SJ, Asgerov AA, Isayeva GA (2014) Analysis of plants in veterinary research of azerbaycan on ethnobotanical materials. Am J Res Comm 1:51–59

    Google Scholar 

  • Ali Esmail AS (2017) The pharmacology of Equisetum arvense- a review. IOSR J Pharmacy 7:31–42

    Article  Google Scholar 

  • Ali Hashmi M, Khan A, Hanif M, Farooq U, Perveen S (2015) Traditional uses, phytochemistry, and pharmacology of Olea europaea (Olive). Evidence-Based Complem Alternative Med 2015:541591

    Google Scholar 

  • Altunkeyik H, Gülcemal D, Masullo M, Alankus-Caliskan O, Piacente S, Karayildirim T (2012) Triterpene saponins from Cyclamen hederifolium. Phytochem 73:127–133

    Article  CAS  Google Scholar 

  • Ameh SJ, Ochekpe NA, Okolikoand EI, Olorunfemi PO (2010) Basis for ethnomedical use of Gladiolus corm (Family: Iridaceae) in West Africa. Asian J Exp Biol Sci 1:902–906

    Google Scholar 

  • Anderson RC (2000) Nematode parasites of vertebrates. Their development and transmission. CABI Publishing, Wallingford UK 672

  • Attard E, Pacioni P (2011) The phytochemical and in vitro pharmacological testing of Maltese medicinal plants. Bioact Compounds Phytomed 2011:5

    Google Scholar 

  • Barolo MI, Mostacero NR, López SN (2014) Ficus carica L. (Moraceae): an ancient source of food and health. Food Chem 164:119–127

    Article  CAS  Google Scholar 

  • Beaucournu JC, Launay H (1990) Les puces de France et du bassin Méditerranéen occidental. Faune de France 76. Fédération Française des Sociétés de Sciences Naturelles, Paris, France

  • Bhowmik D, Kumar KS, Paswan S, Srivastava S (2012) Tomato-a natural medicine and its health benefits. Int J Pharma Pharmaceut Res 1:33–43

    Google Scholar 

  • Biocca E, Ferretti G (1957) Archeostrongylus italicus gen. nov. et sp. nov., nuovo nematode borsato parassita di Hystrix cristata in Italia centrale. Rend Acc Naz Lincei 23:467–470

    Google Scholar 

  • Bolling BW, Chen CYO, McKay DL, Blumberg JB (2011) Tree nut phytochemicals: composition, antioxidant capacity, bioactivity, impact factors. A systematic review of almonds, Brazils, cashews, hazelnuts, macadamias, pecans, pine nuts, pistachios and walnuts. Nutrition Res Rev 24:244–275

    Article  CAS  Google Scholar 

  • Bruno E, Riccardi C (1995) The diet of the crested porcupine Hystrix cristata L., 1758 in a Mediterranean rural area. Zeitschr Säugetierk 60:226–236

    Google Scholar 

  • Burlacu E, Nisca A, Tanase C (2020) A comprehensive review of phytochemistry and biological activities of Quercus Species. Forests 11:0904

    Article  Google Scholar 

  • Carneiro DM, Jardim TV, Araujo YCL, Arantes AC, de Sousa AC, Barroso WKS, Sousa ALL, da Cunha LC, Cardoso Cirilo HN, Freitas Bara MT, Veiga Jardim PCB (2019) Equisetum arvense: new evidences supports medical use in daily clinic. Pharmacogn Rev 13:50–58

    Article  CAS  Google Scholar 

  • Carrai V, Borgognini-Tarli SM, Huffman MA, Bardi M (2003) Increase in tannin consumption by sifaka (Propithecus verreauxi verreauxi) females during the birth season: a case for self-medication in prosimians? Primates 44:61–66

    Article  Google Scholar 

  • Cavallero S, Montalbano di Filippo M, Mori E, Viviano A, De Liberato C, Sforzi A, D’Amelio S, Berrilli F (2021) Morphological and molecular characterization of Trichuris sp. (Nematoda: Hystricidae) in crested porcupines (Hystrix cristata; Rodentia: Hystricidae) from Italy. Diversity 13:628.

  • Cilia G, Bertelloni F, Coppola F, Turchi B, Biliotti C, Poli A, Parisi F, Felicioli A, Cerri D, Fratini F (2020) Isolation of Leptospira serovar Pomona from a crested porcupine (Hystrix cristata L., 1758). Vet Med Sci 6:985–991

    Article  CAS  Google Scholar 

  • Coppola F, Maestrini M, Berrilli F, Procesi IG, Felicioli A, Perrucci S (2020) First report of Giardia duodenalis infection in the crested porcupine (Hystrix cristata L., 1758). Int J Parasitol: Paras Wildl 11:108–113

    Google Scholar 

  • Corsini MT, Lovari S, Sonnino S (1995) Temporal activity patterns of crested porcupines Hystrix cristata. J Zool 236:43–54

    Article  Google Scholar 

  • Cousins D, Huffman MA (2002) Medicinal properties in the diet of gorillas- an ethnopharmacological evaluation. Afr Study Monogr 23:65–89

    Google Scholar 

  • Criado-Fornelio A, Gutierrez-Garcia L, Rodriguez-Caabeiro F, Reus-Garcia E, Roldan-Soriano MA, Diaz-Sanchez MA (2000) A parasitological survey of wild red foxes (Vulpes vulpes) from the province of Guadalajara, Spain. Vet Parasitol 92:245–251

    Article  CAS  Google Scholar 

  • Crişan I, Cantor M (2016) New perspectives on medicinal properties and uses of Iris sp. Hop Med Plants 24:24–36

    Google Scholar 

  • D’Amico W, De Merich D, Di Renzi S, D’Ovidio MC, Martini A, Melis P, Tomao P, Vonesch N (2018) Zoonosi trasmesse da zecche. Inail - Dipartimento di Medicina, Epidemiologia, Igiene del Lavoro e Ambientale, Milano, Italy

  • Delaviz H, Mohammadi J, Ghalamfarsa G, Mohammadi B, Farhadi N (2017) A review study on phytochemistry and pharmacology applications of Juglans regia. Plant Pharmacogn Rev 11:145–152

    Article  CAS  Google Scholar 

  • De Vasconcelos MCBM, Bennett RN, Rosa EAS, Ferreira-Cardoso JV (2010) Composition of European chestnut (Castanea sativa Mill.) and association with health effects: fresh and processed products. Sci Food Agric 90:1578–1589

    Article  Google Scholar 

  • Durette-Desset MC (1966) Sur deux noveaux trichostrongyles, parasite du porc-épic au Vietnam. Ann Parasitol Hum Compareè 41:453–466

    Article  CAS  Google Scholar 

  • Fennane N (2007) Contribution à l’étude des plantes toxiques et médicinales dans les provinces d’Essaouira et du Haouz. Dissertation, Institut Agronomique et Vétérinaire Hassan II, Rabat, Morocco

  • Forbey J, Harvey A, Huffman MA, Provenza F, Sullivan R, Tasdemir D (2009) Exploitation of secondary metabolites by animals: a behavioral response to homeostatic challenges. Integr Compar Biol 49:314–328

    Article  CAS  Google Scholar 

  • Friedman M (2013) Anticarcinogenic, cardioprotective, and other health benefits of tomato compounds lycopene, α-tomatine, and tomatidine in pure form and in fresh and processed tomatoes. J Agric Food Chem 61:9534–9550

    Article  CAS  Google Scholar 

  • Grade JT, Tabutt JRS, Van Damme P (2009) Four footed pharmacists: indications of self-medicating livestock in Karamoja, Uganda. Economic Bot 63:29–42

    Article  Google Scholar 

  • Greene AM, Panyadee P, Inta A, Huffman MA (2020) Asian elephant self-medication as a source of ethnoveterinary knowledge among Karen mahouts in northern Thailand. J Ethnopharmacol 259:e112823

    Article  Google Scholar 

  • Guarrera PM, Lucchese F, Medori S (2008) Ethnophytotherapeutical research in the high Molise region (Central-Southern Italy). J Ethnobiol Ethnomed 4:7

    Article  Google Scholar 

  • Guo S, Ge Y, Na Jom K (2017) A review of phytochemistry, metabolite changes, and medicinal uses of the common sunfower seed and sprouts (Helianthus annuus L.). Chem Cent J 11:95

  • Hart BL, Hart LA (2018) How mammals stay healthy in nature: the evolution of behaviours to avoid parasites and pathogens. Philos Trans R Soc b: Biol Sci 373:20170205

    Article  Google Scholar 

  • Hart B (1990) Behavioral adaptations to pathogens and parasites: five strategies. Neurosci Biobehav Rev 14:273–294

    Article  CAS  Google Scholar 

  • Hass CC (2009) Competition and coexistence in sympatric bobcats and pumas. J Zool 278:174–180

    Article  Google Scholar 

  • Hemmes RB, Alvarado A, Hart BL (2002) Use of California bay foliage by wood rats for possible fumigation of nest-born ectoparasites. Behav Ecol 13:381–385

    Article  Google Scholar 

  • Huffman MA (1997) Current evidence for self-medication in primates: a multidisciplinary perspective. Yearb Phys Anthropol 40:171–200

    Article  Google Scholar 

  • Huffman MA (2002) Animal origins of herbal medicine. (Origines future de la medicine par les plantes) In: Fleurentin J, Pelt JM, Mazars G (Eds) Des sources du savoir aux medicaments du future- from the sources of knowledge to the medicines of the future: IRD Editions, Paris, France, (English) pp. 31–42. (French) pp. 43–54

  • Huffman MA (2003) Animal self-medication and ethnomedicine: exploration and exploitation of the medicinal properties of plants. Proc Nutri Soc 62:371–381

    Article  Google Scholar 

  • Huffman MA (2007) Animals as a source of medicinal wisdom in indigenous societies. In: Bekoff M (ed) Encyclopedia of human-animal relations, vol 2. Greenwood Publishing Group. Westport, CT, pp 434–441

    Google Scholar 

  • Huffman MA (2019) Self-medication: passive prevention and active treatment. In: Choe JC (Eds) Encyclopedia of animal behavior (2nd ed.). Elsevier, Academic Press. 2:696–702.

  • Huffman MA, Caton JM (2001) Self-induced increase of gut motility and the control of parasitic infections in wild chimpanzees. Int J Primatol 22:329–346

    Article  Google Scholar 

  • Huffman MA, Gotoh S, Turner LA, Hamai M, Yoshida K (1997) Seasonal trends in intestinal nematode infection and medicinal plant use among chimpanzees in the Mahale Mountains National Park, Tanzania. Primates 38:111–125

    Article  Google Scholar 

  • Huffman MA, Seifu M (1989) Observations on the illness and consumption of a possibly medicinal plant Vernonia amygdalina by a wild chimpanzee in the Mahale Mountains, Tanzania. Primates 30:51–63

    Article  Google Scholar 

  • Huffman MA, Sun B-H, Li J-H (2020) Medicinal properties in the diet of Tibetan macaques at Mt. Huangshan- a case for self-medication? In: Li J-H, Sun L, Kappeler P (Eds) The behavioral ecology of the Tibetan macaque. Springer Intl. Publ Ag pp. 223–248

  • Huffman MA (2021) Folklore, animal self-medication, and phyotherapy – something old, something new, something borrowed, some things true. Planta Med. https://doi.org/10.1055/a-1586-1665

    Article  Google Scholar 

  • Hussain F, Ahmad B, Hameed I, Dastagir G, Sanaullah P, Azam S (2010) Antibacterial, antifungal and insecticidal activities of some selected medicinal plants of polygonaceae. Afr J Biotechn 9:5032–5036

    Google Scholar 

  • Khallouki F, Haubner R, Erben G, Ulrich CM, Owen RW (2012) Phytochemical composition and antioxidant capacity of various botanical parts of the fruits of Prunus × domestica L. from the Lorraine region of Europe. Food Chem 133:697–706

    Article  CAS  Google Scholar 

  • Khan MY, Panchal S, Vyas N, Butani A, Kumar V (2007) Olea europaea: a phyto-pharmacological review. Pharmacogn Rev 1:1

    Google Scholar 

  • Kobayashi S, Moriyama K, Miyataka K, Abe S, Sato C, Kawazoe K (2017) Helianthus tuberosus (Jerusalem artichoke) tubers improve glucose tolerance and hepatic lipid profile in rats fed a high-fat diet. Asian Pac J Trop Med 10:439–443

    Article  Google Scholar 

  • Krief S, Huffman MA, Sévenet T, Guillot J, Hladik CM, Grellier P, Loiseau M, Wrangham RW (2006) Bioactive properties of plant species ingested by chimpanzees (Pan troglodytes schweinfurthii) in the Kibale National Park, Uganda. Am J Primatol 68:51–71

    Article  CAS  Google Scholar 

  • Kumar KPS, Bhowmik D, Biswajit C, Tiwari P (2010) Allium cepa: a traditional medicinal herb and its health benefits. J Chem Pharm Res 2:283–291

    Google Scholar 

  • Lans C, Turner N, Khan T, Brauer G (2007) Ethnoveterinary medicines used to treat endoparasites and stomach problems in pigs and pets in British Columbia, Canada. Vet Parasit 148:325–340

    Article  Google Scholar 

  • Laurenzi A, Bodino N, Mori E (2016) Much ado about nothing: assessing the impact of a problematic rodent on agriculture and native trees. Mammal Res 61:65–72

    Article  Google Scholar 

  • Lee KH, Rhee KH (2013) Antimalarial activity of nepodin isolated from Rumex crispus. Arch Pharm Res 36:430–435

    Article  CAS  Google Scholar 

  • Leporatti ML, Ivancheva S (2003) Preliminary comparative analysis of medicinal plants used in the traditional medicine of Bulgaria and Italy. J Ethnopharmacol 87:123–142

    Article  Google Scholar 

  • Lovari S, Sforzi A, Mori E (2013) Habitat richness affects home range size in a monogamous large rodent. Behav Processes 99:42–46

    Article  Google Scholar 

  • Lovari S, Corsini MT, Guazzini B, Romeo G, Mori E (2017) Suburban ecology of the crested porcupine in a heavily poached area: a global approach. Eur J Wildl Res 63:10

    Article  Google Scholar 

  • MacDonald DW (1992) The velvet claw: a natural history of carnivores. BBC Book, London, UK

  • MacIntosh AJJ, Huffman MA (2010) Towards understanding the role of diet in host-parasite interactions in the case of Japanese macaques. In: Nakagawa F, Nakamichi M, Sugiura H (eds) The Japanese macaques. Springer, Tokyo, Japan, pp 323–344

    Chapter  Google Scholar 

  • MacIntosh AJJ, Hernandez AD, Huffman MA (2010) Host age, sex and reproduction affect nematode parasitism among wild Japanese macaques. Primates 51:353–364

    Article  Google Scholar 

  • Marrelli M, Amodeo V, Statti G, Conforti F (2019) Biological properties and bioactive components of Allium cepa L.: focus on potential benefits in the treatment of obesity and related comorbidities. Molecules 24:119

  • Mashwani ZUR, Zahara K, Bashir T, Tabassum S (2015) Chemistry, pharmacology and ethnomedicinal uses of Helianthus annuus (Sunflower): a review. Pure Appl Biol 4:226–235

    Article  Google Scholar 

  • McLennan MR, Huffman MA (2012) High frequency of leaf swallowing and the relationship to intestinal parasite expulsion in “village” chimpanzees at Bulindi, Uganda. Am J Primatol 74:642–650

    Article  Google Scholar 

  • Mennerat A, Mirleau P, Blondel J, Perret P, Lambrechts MM, Heeb P (2009) Aromatic plants in nests of the blue tit Cyanistes caeruleus protect chicks from bacteria. Oecol 161:849–855

    Article  Google Scholar 

  • Miarinjara A, Bland DM, Belthoff JR, Hinnebusch BJ (2021) Poor vector competence of the human flea, Pulex irritans, to transmit Yersinia pestis. Parasit Vectors 14:1–15

    Article  Google Scholar 

  • Mohammed GJ, Hameed IH, Kamal SA (2011) Anti-inflammatory effects and other uses of Cyclamen species: A Review. Indian J 1:206–211

    Google Scholar 

  • Mohr E (1965) Altweltliche Stachelschweine. In: Ziemsen Verlag, A., Wissenschaften, Westarp (Eds. A. Ziemsen Verlag Publisher, Wittenburg Lutherstadt, Germany

  • Mori E, Di Gregorio M, Mazza G, Ficetola GF (2020) Seasonal consumption of insects by the crested porcupine in Central Italy. Mammalia 2020–0131. https://doi.org/10.1515/mammalia-2020-0131

  • Mori E, Lovari S, Sforzi A, Romeo G, Pisani C, Massolo A, Fattorini L (2014) Patterns of spatial overlap in a monogamous large rodent, the crested porcupine. Behav Processes 107:112–118

    Article  Google Scholar 

  • Mori E, Sforzi A, Menchetti M, Mazza G, Lovari S, Pisanu B (2015) Ectoparasite load in the crested porcupine Hystrix cristata Linnaeus, 1758 in Central Italy. Parasitol Res 114:2223–2229

    Article  Google Scholar 

  • Mori E, Menchetti M, Lucherini M, Sforzi A, Lovari S (2016) Timing of reproduction and paternal cares in the crested porcupine. Mammal Biol 81:345–349

    Article  Google Scholar 

  • Mori E (2017a) Porcupines in the landscape of fear: effects of hunting with dogs on the behaviour of a non-target species. Mammal Res 62:251–258

  • Mori E, Mazza G, Galimberti A, Angiolini C, Bonari G (2017b) The porcupine as “little thumbling”: the role of Hystrix cristata in the spread of Helianthus tuberosus. Biol 1211–1216

  • Mori E, Bozzi R, Laurenzi A (2017b) Feeding habits of the crested porcupine Hystrix cristata L. 1758 (Mammalia, Rodentia) in a Mediterranean area of Central Italy. Eur Zool J 84:261–265

    Article  Google Scholar 

  • Mori E, Lovari S, Mazza G (2018a) The bone collector: temporal patterns of bone-gnawing behaviour define osteophagia as a female prerogative in a large rodent. Behav Ecol Sociobiol 72:89

    Article  Google Scholar 

  • Mori E, Pisanu B, Zozzoli R, Solano E, Olivieri E, Sassera D, Montagna M (2018b) Arthropods and associated pathogens from native and introduced rodents in Northeastern Italy. Paras Res 117:3237–3243

    Article  Google Scholar 

  • Mori E, Di Gregorio M, Mazza G, Ficetola GF (2021) Seasonal consumption of insects by the crested porcupine in Central Italy. Mammalia 85:231–235

    Article  Google Scholar 

  • Mosaddegh M, Naghibi F, Moazzeni H, Pirani A, Esmaeili S (2012) Ethnobotanical survey of herbal remedies traditionally used in Kohghiluyeh va Boyer Ahmad province of Iran. J Ethnopharmacol 141:80–95

    Article  Google Scholar 

  • Mukherjee JR, Chelladurai V, Ronald J, Rawat GS, Mani P, Huffman MA (2011) Do animals eat what we do? Observations on medicinal plants bused by humans and animals of Mudanthurai Range, Tamil Nadu. pp. 179–195. In: Medicinal Plants and Sustainable Development (ed. CP Kala), Nova Science Publications, New York

  • Negre A, Tarnaud L, Roblot JF, Gantier JC, Guillot J (2006) Plants consumed by Eulemur fulvus in Comoros Islands (Mayotte) and potential effects on intestinal parasites. Int J Primatol 27:1495–1517

    Article  Google Scholar 

  • O’Donnell BS, Elston MD (2020) What’s eating you? Human flea (Pulex irritans). Close Encounters with the Environment 106:233–235

    Google Scholar 

  • Obadi M, Xu JSB (2021) Highland barley: chemical composition, bioactive compounds, health effects, and applications. Food Res Int 140:110065

    Article  CAS  Google Scholar 

  • Perestrelo R, Silva C, Pereira J, Câmara JS (2014) Healthy effects of bioactive metabolites from Vitis vinifera L. grapes: a review. Grapes: production, phenolic composition and potential biomedical effects. Nova Science Technology Editors, New York, USA

  • Pérez-Eid C (2007) Les tiques: identification, biologie, importance médicale et vétérinaire. Lavoisier Editions, Paris, France

  • Petroni LM, Huffman MA, Rodriguez E (2017) Medicinal plants in the diet of woolly spider monkeys (Brachyteles arachnoides, E. Geoffroy, 1806) – a bio-rational for the search of new medicines for human use? Rev Bras Farmacogn 27:135–142

    Article  Google Scholar 

  • Pigozzi G, Patterson IJ (1990) Movements and diet of crested porcupines in the Maremma Natural Park, Central Italy. Acta Theriol 35:173–180

    Article  Google Scholar 

  • Poglayen G, Scaravelli D, Tampieri MP, Galuppi R, Nuti C, Gaglio G, Abbene S (2005) Fauna parassitaria dell’istrice Hystrix cristata in Italia. Hystrix Supp 2005:106

    Google Scholar 

  • Primo da Silva L, Pereira E, Pires TCSP, Alves MJ, Pereira OR, Barros L, Ferreira ICFR (2019) Rubus ulmifolius Schott fruits: a detailed study of its nutritional, chemical and bioactive properties. Food Res Int 119:34–43

    Article  CAS  Google Scholar 

  • Quave CL, Plano LRW, Pantuso T, Bennett BC (2008) Effects of extracts from Italian medicinal plants on planktonic growth, biofilm formation and adherence of methicillin-resistant Staphylococcus aureus. J Ethnopharmacol 118:418–428

    Article  CAS  Google Scholar 

  • Rai I, Bachheti RK, Saini CK (2016) A review on phytochemical, biological screening and importance of Wild Apricot (Prunus armeniaca L.). Orient Pharm Exp Med 16:1–15

    Article  Google Scholar 

  • Rajasekar R, Chattopadhyay B, Sripathi K (2006) Depositing masticated plant materials inside tent roosts in Cynopterus sphinx (Chiroptera: Pteropodidae) in Southern India. Acta Chiropterol 8:269–274

    Article  Google Scholar 

  • Ratnam N (2017) A review on Cucurbita pepo. Int J Pharm Phytochem Res 9:1190–1194

    Google Scholar 

  • Riccardi C, Bruno E (1996) Food intake of captive porcupines Hystrix cristata (Rodentia, Hystricidae). Atti Soc Tosc Sci Nat Mem Serie B 103:81–83

    Google Scholar 

  • Samal L, Chaturvedi VB, Pattanaik AK (2017) Effects of dietary supplementation with Jerusalem artichoke (Helianthus tuberosus L.) tubers on growth performance, nutrient digestibility, activity and composition of large intestinal microbiota in rats. J Anim Feed Sci 26:50–58

    Google Scholar 

  • Samson DR, Muehlenbein MP, Hunt KD (2013) Do chimpanzees (Pan troglodytes schweinfurthii) exhibit sleep related behaviors that minimize exposure to parasitic arthropods? A preliminary report on the possible anti-vector function of chimpanzee sleeping platforms. Primates 54:73–80

    Article  Google Scholar 

  • Santini L (1980) The habits and influence on the environment of the old-world porcupine Hystrix cristata L. in the northernmost part of its range. Vert Pest Conf Proc Coll 1:149–153

    Google Scholar 

  • Senini C (2019) Giardia duodenalis in Hystrix cristata nell’areale Romagnolo. MSc thesis in Medicina Veterinaria, Alma Mater Studiorum, Università di Bologna, Bologna, Italy

  • Sonnino S (1998) Spatial activity and habitat use of crested porcupine, Hystrix cristata L., 1758 (Rodentia, Hystricidae) in central Italy. Mammalia 62:175–189

    Article  Google Scholar 

  • Strol WD (2018) Bear: Myth, Animal. North Atlantic Books, Berkley, Icon

    Google Scholar 

  • Sultana N, Rehman H, Muntaha ST, Haroon Z, Fatima D, Fakhra H (2020) Prunus domestica: a review. Asian J Pharmacogn 4:21–29

    Google Scholar 

  • Suarez-Rodriquez M, Lopez-Rull I, Macias Garcia C (2013) Incorporation of cigarette butts into nests reduces nest ectoparasite load in urban birds: new ingredients for an old recipe? Biol Lett 9:20120931

    Article  Google Scholar 

  • Tasdemir D, Andrew JJ, MacIntosh AJJ, Stergioua P, Kaisere M, Mansourg NR, Bickleg Q, Huffman MA (2020) Antiprotozoal and antihelminthic properties of plants ingested by wild Japanese macaques (Macaca fuscata yakui) in Yakushima Island. J Ethnopharmacol 247:112270

    Article  CAS  Google Scholar 

  • Vasas A, Orbán-Gyapai O, Hohmann J (2015) The genus Rumex: review of traditional uses, phytochemistry and pharmacology. J Ethnopharm 175:198–228

    Article  CAS  Google Scholar 

  • Villalba JJ, Miller J, Ungar ED, Landau SY, Glendinning J (2014) Ruminant self-medication against gastrointestinal nematodes: evidence, mechanism, and origins. Parasite 21:31

    Article  Google Scholar 

  • Viviano A (2019) Antiche e vecchie varietà di frumento: caratteristiche morfologiche, nutrizionali e nutraceutiche. BSc Thesis in Agronomical Sciences, University of Pisa, Italy

  • Viviano A, Amori G, Luiselli L, Oebel H, Bahleman F, Mori E (2020) Blessing the rains down in Africa: spatiotemporal behaviour of the crested porcupine Hystrix cristata (Mammalia: Rodentia) in the rainy and dry seasons, in the African savannah. Tropical Zool 33:113–124

    Article  Google Scholar 

  • Zavalloni D, Castellucci M (1994) Analisi dell’areale dell’istrice (Hystrix cristata Linneaus, 1758) in Romagna. Hystrix 5:53–62

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Sandro Lovari for his valuable suggestions during the research. Maria Teresa Corsini, Mauro Lucherini, Andrea Sforzi, Anna Bocci, Alessandro Massolo, Fiora Meschi, Maddalena Mattii, and Giorgia Romeo helped in performing the captures of crested porcupines for radio-collar attachment (Environment Ministry permits: Prot. PNM-2011-15525 20.07.2011; ISPRA: Prot. 0026807 11.08.2011). We extend our sincere appreciation to Keith Riggle for reading over the final version of the manuscript with a critical eye for grammatical detail and content. We thank Christian Gortázar, Editor-in-Chief, and an anonymous reviewer for providing invaluable comments on our manuscript.

Author information

Authors and Affiliations

Authors

Contributions

AV, MAH, and EM conceived the study and analysed the data. EM and CS collected field data. AV organised the dataset. All authors participated in writing the MS and approved the final version.

Corresponding author

Correspondence to Michael A. Huffman.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viviano, A., Huffman, M.A., Senini, C. et al. Do porcupines self-medicate? The seasonal consumption of plants with antiparasitic properties coincides with that of parasite infections in Hystrix cristata of Central Italy. Eur J Wildl Res 68, 72 (2022). https://doi.org/10.1007/s10344-022-01620-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10344-022-01620-8

Keywords

Navigation