Skip to main content
Log in

Life history modelling reveals trends in fitness and apparent survival of an isolated Salamandra salamandra population in an urbanised landscape

  • Original Article
  • Published:
European Journal of Wildlife Research Aims and scope Submit manuscript

Abstract

Life history theory provides a basis for understanding how amphibians persist within landscapes fragmented by urbanisation. To quantify the life history traits of a population susceptible to habitat disturbance, we implemented a capture-recapture study of an isolated population of the fire salamander (Salamandra salamandra) within an urbanised catchment of Budapest, Hungary. We estimated life history parameters to assess intraspecific differences in growth rates, body condition, apparent survival and superpopulation size. There was no apparent sexual dimorphism in the population. Relatively rapid growth rates were estimated post-metamorphosis to 7 years; growth then slowed, and the growth curve reached a plateau towards the asymptotic body length (males 195.6 mm; females 193.8 mm), with estimated longevity (> 20 years). The age structure was relatively stable with a high proportion of younger age classes (3–4 years) indicating adequate recruitment. There were no differences between male, female and juvenile body condition, although male and juvenile body condition was higher in spring/summer than in autumn. There were no differences in the probability of apparent survival (φ) between adult males and females, which were relatively high (annual φ ~ 0.7–0.8). Juvenile survival was estimated to be substantially lower (~ 0.2). There was a positive relationship between the probability of apparent survival and body condition. The mean estimated superpopulation size for males, females and juveniles was 999.75, 853.94 and 533.61, respectively. Our results suggest that the S. salamandra population is demographically healthy, relatively large and persists despite the ongoing urbanisation in the local catchment, but requires monitoring to detect future habitat disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alarcón-Ríos L, Nicieza AG, Kaliontzopoulou A, Buckley D, Velo-Antón G (2020) Evolutionary history and not heterochronic modifications associated with viviparity drive head shape differentiation in a reproductive polymorphic species, Salamandra salamandra. Evol Biol 47:43–55

    Article  Google Scholar 

  • Alarcón-Ríos L, Velo-Antón G, Kaliontzopoulou A (2017) A non-invasive geometric morphometrics method for exploring variation in dorsal head shape in urodeles: sexual dimorphism and geographic variation in Salamandra salamandra. J Morphol 278:475–485

    Article  PubMed  Google Scholar 

  • Alcobendas M, Castanet J (2000) Bone growth plasticity among populations of Salamandra salamandra: interactions between internal and external factors. Herpetologica 56:14–26

    Google Scholar 

  • Alonzo SH, Kindsvater HK (2008) Life-history patterns. In: Jørgensen SE, Fath BD (eds) General Ecology, vol 3. Encyclopedia of Ecology, 5 vols. Elsevier, Oxford, pp 2175–2180

    Google Scholar 

  • Allentoft ME, O’Brien J (2010) Global amphibian declines, loss of genetic diversity and fitness: a review. Diversity 2:47–71. https://doi.org/10.3390/d2010047

    Article  Google Scholar 

  • Álvarez D, Lourenço A, Oro D, Velo-Antón G (2015) Assessment of census (N) and effective population size (Ne) reveals consistency of Ne single-sample estimators and a high Ne/N ratio in an urban and isolated population of fire salamanders. Conserv Genet Resour 7:705–712

    Article  Google Scholar 

  • Andrews RM (1982) Patterns of growth in reptiles. In: Gans C, Pough FH (eds) “Biology of the Reptilia, vol 13. Physiology D”. Academic Press, New York, pp 273–320

    Google Scholar 

  • Arntzen JW, van Belkom J (2020) ‘Mainland-island’ population structure of a terrestrial salamander in a forest-bocage landscape with little evidence for in situ ecological speciation. Sci Rep 10:1700. https://doi.org/10.1038/s41598-020-58551-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey LL, Simons TR, Pollock KH (2004) Estimating detection probability parameters for Plethodon salamanders using the robust capture–recapture design. J Wildl Manage 68:1–13

    Article  Google Scholar 

  • Balogová M, Jelić D, Kyselová M, Uhrin M (2017) Subterranean systems provide a suitable overwintering habitat for Salamandra salamandra. Int J Speleol 46:321–329

    Article  Google Scholar 

  • Bar-David S, Segev O, Peleg N, Hill N, Templeton AR, Schultz CB, Blaustein L (2007) Long-distance movements by fire salamanders (Salamandra infraimmaculata) and implications for habitat fragmentation. Isr J Ecol Evol 53:143–159

    Article  Google Scholar 

  • Barrett K, Helms BS, Samoray ST, Guyer C (2010) Growth patterns of a stream vertebrate differ between urban and forested catchments. Freshwater Biol 55:1628–1635

    Google Scholar 

  • Barrett K, Price SJ (2014) Urbanization and stream salamanders: a review, conservation options, and research needs. Freshw Sci 33(927–940):914

    Google Scholar 

  • von Bertalanffy L (1938) A quantitative theory of organic growth (inquiries on growth laws 11.). Human Biol 10:181–213

    Google Scholar 

  • Bouzid S, Konecny L, Grolet O, Douady CJ, Joly P, Bouslama Z (2017) Phylogeny, age structure, growth dynamics and colour pattern of the Salamandra algira algira population in the Edough Massif, northeastern Algeria. Amphibia-Reptilia 38:461–471

    Article  Google Scholar 

  • Brooks SP, Gelman A (1998) General methods for monitoring convergence of iterative simulations. J Comput Graph Stat 7:434–455

    Google Scholar 

  • Burgon JD, Vences M, Steinfartz S, Bogaerts S, Bonato L, Donaire-Barroso D, Martínez-Solano I, Velo-Antón G, Vieites DR, Mable BK, Elmer KR (2021) Phylogenomic inference of species and subspecies diversity in the Palearctic salamander genus Salamandra. Mol Phylogenet Evol 157: 107063

  • Carafa M, Biondi M (2004) Application of a method for individual photographic identification during a study on Salamandra salamandra gigliolii in central Italy. Ital J Zool 71:181–184

    Article  Google Scholar 

  • Congdon JD, Dunham AE, van Loben Sels RC (1993) Delayed sexual maturity and demographics of Blanding’s turtles (Emydoidea blandingii): implications for conservation and management of long-lived organisms. Conserv Biol 7:826–833

    Article  Google Scholar 

  • Connette GM, Semlitsch RD (2015) A multistate mark–recapture approach to estimating survival of PIT-tagged salamanders following timber harvest. J Appl Ecol 52:1316–1324

    Article  Google Scholar 

  • Duellman WE, Trueb L (1986) Biology of amphibians. McGraw-Hill, New York

    Google Scholar 

  • Fabens AJ (1965) Properties and fitting of the von Bertalanffy growth curve. Growth 29:265–289

    CAS  PubMed  Google Scholar 

  • Fišer C (2019) Life histories. In White WB, Culver DC, Pipan T (eds) Encyclopedia of Caves 3rd edn. Chapter 77 pp 652‒657. https://doi.org/10.1016/B978-0-12-814124-3.00077-7

  • Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7:457–472

    Article  Google Scholar 

  • Griffiths RA, Teunis B (1996) Newts and salamanders of Europe. T & AD Poyser, London

    Google Scholar 

  • Halliday TR, Verrell PA (1988) Body size and age in amphibians and reptiles. J Herpetol 22:253–265

    Article  Google Scholar 

  • Hamer AJ, McDonnell MJ (2008) Amphibian ecology and conservation in the urbanising world: a review. Biol Conserv 141:2432–2449

    Article  Google Scholar 

  • Heard GW, Scroggie MP, Malone BS (2012) The life history and decline of the threatened Australian frog, Litoria raniformis. Austral Ecol 37:276–284

    Article  Google Scholar 

  • Hernández-Pacheco R, Plard F, Grayson KL, Steiner UK (2021) Demographic consequences of changing body size in a terrestrial salamander. Ecol Evol 11:174–185

    Article  PubMed  Google Scholar 

  • Jakob EM, Marshall SD, Uetz GW (1996) Estimating fitness: a comparison of body condition indices. Oikos 77:61–67

    Article  Google Scholar 

  • Kalezić M, Džukić G, Ivanović A, Aleksić I (2000) Body size, age and sexual dimorphism in the genus Salamandra: a study case of the Balkan species. Spixiana 23:283–292

    Google Scholar 

  • Kaufmann KW (1981) Fitting and using growth curves. Oecologia 49:293–299

    Article  PubMed  Google Scholar 

  • Kéry M, Schaub M (2011) Bayesian population analysis using WinBUGS: a hierarchical perspective. Academic Press, Amsterdam

    Google Scholar 

  • Kopp-Hamberger M (1998) Eine Methode zur individuellen Erkennung von Feuersalamandern (Salamandra salamandra terrestris) anhand des Zeichnungsmusters. Salamandra 3:239–244

    Google Scholar 

  • Krause ET, Steinfartz S, Caspers BA (2011) Poor nutritional conditions during the early larval stage reduce risk-taking activities of Fire Salamander larvae (Salamandra salamandra). Ethology 117:416–421

    Article  Google Scholar 

  • Kuzmin SL (2000) Species account of Salamandra salamandra. Amphibia Web https://amphibiaweb.org/lists/Salamandridae.shtml

  • Labus N, Cvijanović M, Vukov T (2013) Sexual size and shape dimorphism in Salamandra salamandra (Amphibia, Caudata, Salamandridae) from the central Balkans. Arch Biol Sci 65:969–975

    Article  Google Scholar 

  • Lebreton J, Burnham KP, Clobert J, Anderson DR (1992) Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecol Monogr 62:67–118

    Article  Google Scholar 

  • Leclair MH, Levsseur M, Leclair JR (2006) Life history traits of Plethodon cinereus in the northern parts of its range: variations in population structure, age, and growth. Herpetologica 62:265–282

    Article  Google Scholar 

  • Lecq S, Ballouard JM, Caron S, Livoreil B, Seynaeve V, Matthieu LA, Bonnet X (2014) Body condition and habitat use by Hermann’s tortoises in burnt and intact habitats. Conserv Physiol 2:cou019. https://doi.org/10.1093/conphys/cou019

  • Lourenço A, Álvarez D, Wang IJ, Velo-Antón G (2017) Trapped within the city: integrating demography, time since isolation and population-specific traits to assess the genetic effects of urbanization. Mol Ecol 26:1498–1514

    Article  PubMed  CAS  Google Scholar 

  • McCarthy MA (2007) Bayesian methods for ecology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Méhely L (1918) Fauna Regni Hungariae (Reptilia et Amphibia). Királyi Magyar Természettudományi Társulat 13

  • Miaud C, Andreone F, Ribéron A, De Michelis S, Clima V, Castanet J, Guyétant R (2001) Variations in age, size at maturity and gestation duration among two neighbouring populations of the alpine salamander (Salamandra lanzai). J Zool 254:251–260

    Article  Google Scholar 

  • Miaud C, Guyetant R, Faber H (2000) Age, size, and growth of the alpine newt, Triturus alpestris (Urodela: Salamandridae), at high altitude and a review of life-history trait variation throughout its range. Herpetologica 56:135–144

    Google Scholar 

  • Muñoz DJ, Miller Hesed K, Campbell Grant EH, Miller DAW (2016) Evaluating within-population variability in behavior and demography for the adaptive potential of a dispersal-limited species to climate change. Ecol Evol 6:8740–8755

    Article  PubMed  PubMed Central  Google Scholar 

  • Najbar A, Konowalik A, Halupka K, Najbar B, Ogielska M (2020) Body size and life history traits of the fire salamander Salamandra salamandra from Poland. Amphibia-Reptilia 41:63–74

    Article  Google Scholar 

  • Noël S, Ouellet M, Galois P, Lapointe FJ (2007) Impact of urban fragmentation on the genetic structure of the eastern red-backed salamander. Conserv Genet 8:599–606

    Article  CAS  Google Scholar 

  • Petrik CM (2019) Life history of marine fishes and their implications for the future oceans. In: Cisneros-Montemayor AM, Cheung WWL, Ota Y (ed) Predicting Future Oceans Sustainability of Ocean and Human Systems Amidst Global Environmental Change 2019, Chapter 16 pp 165‒172. https://doi.org/10.1016/B978-008045405-4.00205-6

  • Plummer M (2013) JAGS Version 3.4.0 user manual. https://sourceforge.net/projects/mcmc-jags/files/Manuals/

  • Pollock KH, Alpizar-Jara R (2005) Classical open-population capture-recapture models. In: Arnstrup SC, McDonald TL, Manly BFJ (eds) Handbook of capture-recapture analysis. Princeton University Press, Princeton, pp 36–57

    Google Scholar 

  • Price SJ, Dorcas ME, Gallant AL, Klaver RW, Willson JD (2006) Three decades of urbanization: estimating the impact of land-cover change on stream salamander populations. Biol Conserv 133:436–441

    Article  Google Scholar 

  • Price SJ, Eskew EA, Cecala KK, Browne RA, Dorcas ME (2012) Estimating survival of a streamside salamander: importance of temporary emigration, capture response, and location. Hydrobiologia 679:205–215

    Article  Google Scholar 

  • R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Rebelo R, Caetano MH (1995) Use of the skeletochronological method for ecodemographical studies on Salamandra salamandra gallaica from Portugal. Scientia Herpetologica 1995:135–140

    Google Scholar 

  • Reinhard S, Renner S, Kupfer A (2015) Sexual dimorphism and age of Mediterranean salamanders. Zoology 118:19–26

    Article  PubMed  Google Scholar 

  • Reznick D, Bryant MJ, Bashey F (2002) r- and K-selection revisited: the role of population regulation in life-history evolution. Ecology 83:1509–1520

    Article  Google Scholar 

  • Royle JA, Dorazio RM (2008) Hierarchical modeling and inference in ecology: the analysis of data from populations, metapopulations and communities. Academic Press, New York 

    Google Scholar 

  • Schmidt BR, Feldmann R, Schaub M (2005) Demographic processes underlying population growth and decline in Salamandra salamandra. Conserv Biol 19:1149–1156 https://doi.org/10.1111/j.1523-1739.2005.00164.x

  • Schmidt BR, Itin E, Schaub M (2014) Seasonal and annual survival of the salamander Salamandra salamandra salamandra. J Herpetol 48:20–23

    Article  Google Scholar 

  • Schmidt BR, Schaub M, Steinfartz S (2007) Apparent survival of the salamander Salamandra salamandra is low because of high migratory activity. Front Zool 4:19

    Article  PubMed  PubMed Central  Google Scholar 

  • Schorn S, Kwet A (2010) Feuersalamander. Natur und Tier Verlag, Münster

    Google Scholar 

  • Schulte U, Küsters D, Steinfartz S (2007) A PIT tag based analysis of annual movement patterns of adult fire salamanders (Salamandra salamandra) in a Middle European habitat. Amphibia-Reptilia 28:531–536

    Article  Google Scholar 

  • Schulte-Hostedde AI, Zinner B, Millar JS, Hickling GJ (2005) Restitution of mass-size residuals: validating body condition indices. Ecology 86:155–163

    Article  Google Scholar 

  • Seifert D (1991) Untersuchungen an einer ostthüringischen Population des Feuersalamanders (Salamandra salamandra). Artenschutzreport 1:1–16

    Google Scholar 

  • Smirina EM (1994) Age determination and longevity in amphibians. Gerontology 40:133–146

    Article  CAS  PubMed  Google Scholar 

  • Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A (2002) Bayesian measures of model complexity and fit. J R Stat Soc Series B Stat Methodol 64:583–639

    Article  Google Scholar 

  • Staub NL (2016) Age, sexual dimorphism, and growth rates in the Black Salamander, Aneides flavipunctatus (Plethodontidae). Copeia 104:52–59

    Article  Google Scholar 

  • Su Y, Yajima M (2015) Package ‘R2jags’: using R to run ‘JAGS’. Version 0.5–7. http://CRAN.R-project.org/package=R2jags

  • Szelényi G, Kiss I, Vörös J (2010) Geographic distribution: Salamandra salamandra (fire salamander). Herpetological Review 41:102

    Google Scholar 

  • Thiesmeier B (2004) Der Feuersalamander. Laurenti Verlag, Bielefeld

    Google Scholar 

  • Thiesmeier B, Grossenbacher K (2004) Salamandra salamandra (Linnaeus, 1758) -Feuersalamander. Handbuch der Reptilien und Amphibien Europas: Schwanzlurche IIB, pp 1059‒1132

  • Vörös J, Dankovics R, Harmos K, Dobay G, Kiss I (2010) A foltos szalamandra (Salamandra salamandra) előfordulása és természetvédelmi helyzete Magyarországon. Állattani Közlemények 95:121–149

    Google Scholar 

  • Vörös J, Ursenbacher S, Kiss I, Jelić D, Schweiger S, Szabó K (2017) Increased genetic structuring of isolated Salamandra salamandra populations (Caudata: Salamandridae) at the margins of the Carpathian Mountains. J Zool Syst Evol Res 55:138–149

    Article  Google Scholar 

  • Wagner N, Pellet J, Lötters S, Schmidt BR, Schmitt T (2011) The superpopulation approach for estimating the population size of ‘prolonged’ breeding amphibians: examples from Europe. Amphibia-Reptilia 32:323–332

    Article  Google Scholar 

  • Welsh HH, Pope KL, Wheeler CA (2008) Using multiple metrics to assess the effects of forest succession on population status: a comparative study of two terrestrial salamanders in the US Pacific Northwest. Biol Conserv 141:1149–1160

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to István Kiss.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 131 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiss, I., Hamer, A.J. & Vörös, J. Life history modelling reveals trends in fitness and apparent survival of an isolated Salamandra salamandra population in an urbanised landscape. Eur J Wildl Res 67, 76 (2021). https://doi.org/10.1007/s10344-021-01521-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10344-021-01521-2

Keywords

Navigation