Abstract
In October of 2018, Canada Border Services Agency (CBSA) at Pearson International Airport in Toronto notified the Wildlife Enforcement Branch of Environment and Climate Change Canada that a passenger had arrived aboard a flight from Russia with a large quantity of live leeches. The leeches had been discovered in the passenger’s carry-on luggage. An enforcement officer with Environment and Climate Change Canada detained the leeches to identify the species in order to determine whether the import was lawful. We identified the leeches as Hirudo verbana and extracted DNA from the bloodmeals of a subsample of 240 leeches and used metabarcoding of 6 mitochondrial loci to determine the vertebrate host species on which the leeches had previously fed. Sixteen undomesticated vertebrate host species were identified from the bloodmeals of the imported leeches, indicating that these leeches were collected from wild habitats. Furthermore, the overlap of host species’ distributions point to a possible collecting source in the Volga delta, the Danube delta, or the coastal area region on the east side of the Sea of Azov. Our findings support the utility of invertebrate-derived DNA (iDNA) as a valuable tool in forensic evaluation of trafficked wildlife and provide new evidence regarding illegal exploitation of the European medicinal leech.
Similar content being viewed by others
References
© OpenStreetMap contributors (2019) OpenStreetMap. https://www.openstreetmap.org/copyright
© Tableau Software, Inc. and its licensors (2019) https://www.tableau.com/ip
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
Berry TE, Osterrieder SK, Murray DC, Coghlan ML, Richardson AJ, Grealy AK, Stat M, Bejder L, Bunce M (2017) DNA metabarcoding for diet analysis and biodiversity: a case study using the endangered Australian sea lion (Neophoca cinerea). Ecol Evol 7:5435–5453
Bhattacharyya R (2013) The Volga River. In: Howarth RW (ed) Biomes and ecosystems: an encyclopedia, Salem Press: A Division of EBSCO. Publishing Ipswich, Massachusetts (ISBN: 978-1-4298-3813-9)
Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170
Calvignac-Spencer S, Leendertz FH, Gilbert MTP, Schubert G (2013) An invertebrate stomach’s view on vertebrate ecology: certain invertebrates could be used as “vertebrate samplers” and deliver DNA-based information on many aspects of vertebrate ecology. BioEssays 35(11):1004–1013. https://doi.org/10.1002/bies.201300060
Camacho C et al (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:1–9
Cameron M, Bernstein Y, Williams HE (2007) Clustered sequence representation for fast homology search. J Comput Biol 14:594–614. https://doi.org/10.1089/cmb.2007.R005
Caragiulo A, Dias-Freedman I, Clark JA, Rabinowitz S, Amato G (2014) Mitochondrial DNA sequence variation and phylogeography of Neotropic pumas (Puma concolor). Mitochondrial DNA 25:304–312
Cherfas NB, Gomelsky BI, Emelyanova OV, Recoubratsky AV (1994) Induced diploid gynogenesis and polyploidy in crucian carp, Carassius auratus gibelio (Bloch), x common carp, Cyprinus carpio, hybrids. Aquac Res 25:943–954
CITES Appendices I, II and III (2017) Available at: https://www.cites.org/eng/app/appendices.php
CITES Trade Database (2018) Available at: https://trade.cites.org/
Coleman JM, Huh OK, Braud D (2008) Wetland loss in world deltas. J Coast Res 1:1–14. https://doi.org/10.2112/05-0607.1
D’Amato ME, Alechine E, Cloete KW, Davison S, Corach D (2013) Where is the game? Wild meat products authentication in South Africa: a case study. Investig Genet 4(1):1–13. https://doi.org/10.1186/2041-2223-4-6
Deagle BE, Gales NJ, Evans K, Jarman SN, Robinson S, Trebilco R, Hindell MA (2007) Studying seabird diet through genetic analysis of faeces: a case study on macaroni penguins (Eudyptes chrysolophus). PLoS One 2(9):e831. https://doi.org/10.1371/journal.pone.0000831
Drinkwater R, Schnell IB, Bohmann K, Bernard H, Veron G, Clare E, Gilbert MTP, Rossiter SJ (2019) Using metabarcoding to compare the suitability of two blood-feeding leech species for sampling mammalian diversity in North Borneo. Mol Ecol Resour 19:105–117
Dybowski (1877) in GBIF Secretariat (2019). Perccottus glenii. GBIF Backbone Taxonomy. Checklist dataset. https://doi.org/10.15468/39omei accessed via GBIF.org on 2019-10-28
Eaton MJ, Meyers GL, Kolokotronis SO, Leslie MS, Martin AP, Amato G (2009) Barcoding bushmeat: molecular identification of Central African and South American harvested vertebrates. Conserv Genet 11(4):1389–1404. https://doi.org/10.1007/s10592-009-9967-0
Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 26:2460–2461. https://doi.org/10.1093/bioinformatics/btq461
Elliott JM, Kutschera U (2011) Medicinal leeches: historical use, ecology. Genet Conserv Freshw Rev 4:21–41. https://doi.org/10.1608/frj-4.1.417
ESRI (2011) ArcGIS Online. Environmental Systems Research Institute, Redlands
Fahmy M, Ravelomanantsoa NAF, Youssef S, Hekkala E, Siddall M (2019) Biological inventory of Ranomafana National Park tetrapods using leech-derived iDNA. Eur J Wildl Res 65. https://doi.org/10.1007/s10344-019-1305-3
Fahmy M, Williams K, Tessler T, Weiskopf S, Hekkala E, Siddall M (2020) Assessing iDNA metabarcoding on multilocus pooled sampling strategies from transcontinental terrestrial leech collections. J Parasitol In press
Faircloth BC, Glenn TC (2012) Not all sequence tags are created equal: designing and validating sequence identification tags robust to indels. PLoS One 7:e42543. https://doi.org/10.1371/journal.pone.0042543
Feng YJ, Blackburn DC, Liang D, Hillis DM, Wake DB, Cannatella DC, Zhang P (2017) Phylogenomics reveals rapid, simultaneous diversification of three major clades of Gondwanan frogs at the Cretaceous–Paleogene boundary. Proc Natl Acad Sci U S A 114:E5864–E5870
Foran DR (2006) Relative degradation of nuclear and mitochondrial DNA: an experimental approach. J Forensic Sci 51(4):766–770. https://doi.org/10.1111/j.1556-4029.2006.00176.x
Froese R, Pauly D eds (2019) FishBase. World Wide Web electronic publication. www.fishbase.org, version (08/2019)
Galatchi LD, Tudor M (2006) Europe as a source of pollution – the main factor for the eutrophication of the Danube Delta and the Black Sea. Chem Intention Accident Glob Environ Threats. https://doi.org/10.1007/978-1-4020-5098-5_5
Gray TNE, Channa P, Chanrattanak P, Sovanna P (2014) The status of jungle cat and sympatric small cats in Cambodia’s Eastern Plains. Cat News 8:19–23
Gray TN, Timmins RJ, Jathana D, Duckworth JW, Baral H, Mukherjee S (2016) Felis chaus, jungle cat. The IUCN red list of threatened species 2016: E.T8540A50651463, 8235. https://doi.org/10.2305/IUCN.UK.2016-2.RLTS.T8540A50651463.en
Hanya G, Morishima K, Koide T, Otani Y, Hongo S, Honda T, Okamura H, Higo Y, Hattori M, Kondo Y, Kurihara Y, Jin S, Otake A, Shiroisihi I, Takakuwa T, Yamamoto H, Suzuki H, Kajimura H, Hayakawa T, Suzuki-Hashido N, Nakano T (2019) Host selection of hematophagous leeches (Haemadipsa japonica): implications for iDNA studies. Ecol Res 34(6):842–855. https://doi.org/10.1111/1440-1703.12059
Heptner VG (1992) Mammals of the Soviet Union volume II part 2. Vysshaya ShkolaPublishers
Hyla orientalis Bedriaga, 1890 in GBIF Secretariat (2019) GBIF backbone taxonomy. Checklist dataset https://doi.org/10.15468/39omei accessed via GBIF.org on 2019-10-28
IUCN (2019) The IUCN red list of threatened species. Version 2019-2. https://www.iucnredlist.org
Jeffreys AJ, Brookfield JFY, Semeonoff R (1985) Positive identification of an immigration test-case using human DNA fingerprints. Nature 317(6040):818–819. https://doi.org/10.1038/317818a0
Keim A (1993) Studies on the host specificity of the medicinal blood leech Hirudo medicinalis. Parasitol Res 79(3):251–255. https://doi.org/10.1007/BF00931901
Kutschera U, Elliott JM (2014) The European medicinal leech Hirudo medicinalis: morphology and occurrence of an endangered species. Zoosystem Evol 90:271–280. https://doi.org/10.3897/zse.90.8715
Linacre A, Tobe SS (2011) An overview to the investigative approach to species testing in wildlife forensic science. Investig Genet 2(1):1–9. https://doi.org/10.1186/2041-2223-2-2
Michev T (1998) Biodiversity of the Srebarna biosphere reserve : checklist and bibliography. Bulgaria, Ministry of Environment and Waters. Sofia: Context & Pensoft, Bulgaria
Morley NJ (2007) Anthropogenic effects of reservoir construction on the parasite fauna of aquatic wildlife. EcoHealth 4:374–383. https://doi.org/10.1007/s10393-007-0130-4
Murphy W (2015) Genetic analysis of feline interspecies hybrids. Tufts’ Canine and Feline Breeding and Genetics Conference
Nagy ZT, Sonet G, Glaw F, Vences M (2012) First large-scale DNA barcoding assessment of reptiles in the biodiversity hotspot of Madagascar, based on newly designed COI primers. PLoS One 7(3):e34506. https://doi.org/10.1371/journal.pone.0034506
Ogurlu I, Gundogdu E, Yildirim IC (2010) Population status of jungle cat (Felis chaus) in Egirdir lake, Turkey. J Environ Biol 31(1–2):179–183
Payne R, Sorenson M (2007) Integrative systematics at the species level: plumage, songs and molecular phylogeny of quailfinches Ortygospizan. Bull Br Ornithol Club 127:4–26
Pierpaoli M, Birò ZS, Herrmann M, Hupe K, Fernandes M, Ragni B, Szemethy L, Randi E (2003) Genetic distinction of wildcat (Felis silvestris) populations in Europe, and hybridization with domestic cats in Hungary. Mol Ecol 12:2585–2598. https://doi.org/10.1046/j.1365294X.2003.01939.x
Pilli E, Casamassima R, Vai S, Virgili A, Barni F, D’Errico G, Berti A, Lago G, Caramelli D (2014) Pet fur or fake fur? A forensic approach. Investig Genet 5(1):1–18. https://doi.org/10.1186/2041-2223-5-7
Poinar HN et al (2016) Molecular coproscopy: dung and diet of the extinct ground sloth Nothrotheriops shastensis. Science 281:402–406
Rocha R, Borda E, Andreone F, Rosa GM (2012) First reports of leech parasitism in Malagasy anurans. Comp Parasitol 79:352–356. https://doi.org/10.1654/4546.1
Roewer L (2013) DNA fingerprinting in forensics: past, present, future. Investig Genet 4(1):1. https://doi.org/10.1186/2041-2223-4-22
Saglam N, Saunders R, Lang SA, Shain DH (2016) A new species of Hirudo (Annelida: Hirudinidae): historical biogeography of Eurasian medicinal leeches. BMC Zool 1. https://doi.org/10.1186/s40850-016-0002-x
Sawyer RT (1986) Leech biology and behaviour: feeding biology, ecology, and systematics. Clarendon Press, Oxford
Sayers EW, Cavanaugh M, Clark K, Ostell J, Pruitt KD, Karsch-Mizrachi I (2019). GenBank. Nucleic Acids Res doi:https://doi.org/10.1093/nar/gky989, 47, D94, D99
Schnell IB, Thomsen PF, Wilkinson N, Rasmussen M, Jensen LRD, Willerslev E, Bertelsen MF, Gilbert MTP (2012) Screening mammal biodiversity using DNA from leeches. Curr Biol 22:R262–R263
Schnell IB et al (2015) iDNA from terrestrial haematophagous leeches as a wildlife surveying and monitoring tool - prospects, pitfalls and avenues to be developed. Front Zool 12:1–14
Siddall ME, Trontelj P, Utevsky SY, Nkamany M, Macdonald KS (2007) Diverse molecular data demonstrate that commercially available medicinal leeches are not Hirudo medicinalis. Proc R Soc B Biol Sci 274:1481–1487. https://doi.org/10.1098/rspb.2007.0248
Siddall ME, Barkdull M, Tessler M, Brugler MR, Borda E, Hekkala E (2019) Ideating IDNA: lessons and limitations from leeches in legacy collections. PLoS One 14(2):1–15. https://doi.org/10.1371/journal.pone.0212226
Speller CF, Nicholas GP, Yang DY (2011) Feather barbs as a good source of mtDNA for bird species identification in forensic wildlife investigations. Investig Genet 2(1):1–7. https://doi.org/10.1186/2041-2223-2-16
Sun Z et al (2017) Rapid and recent diversification patterns in Anseriformes birds: inferred from molecular phylogeny and diversification analyses. PLoS One 12:1–21
Tessler M, Weiskopf SR, Berniker L, Hersch R, Mccarthy KP, Yu DW, Siddall ME (2018) Bloodlines: mammals, leeches, and conservation in southern Asia. Syst Biodivers 16:488–496
Trontelj P, Utevsky SY (2012) Phylogeny and phylogeography of medicinal leeches (genus Hirudo): fast dispersal and shallow genetic structure. Mol Phylogenet Evol 63(2):475–485. https://doi.org/10.1016/j.ympev.2012.01.022
Utevsky S, Zagmajster M, Atemasov A, Zinenko O, Utevska O, Utevsky A, Trontelj P (2010) Distribution and status of medicinal leeches (genus Hirudo) in the western palaearctic: anthropogenic, ecological, or historical effects? Aquat Conserv Mar Freshw Ecosyst 20:198–210. https://doi.org/10.1002/aqc.1071
Vences M, Lyra ML, Perl RGB, Bletz MC, Stanković D, Lopes CM, Jarek M, Bhuju S, Geffers R, Haddad CFB, Steinfartz S (2016) Freshwater vertebrate metabarcoding on Illumina platforms using double-indexed primers of the mitochondrial 16S rRNA gene. Conserv Genet Resour 8:323–327
Waldenström J, Kuiken T, Wille M (2017) Narrative overview on wild bird migration in the context of highly pathogenic avian influenza incursion into the European Union. EFSA Support Publ 14(10). https://doi.org/10.2903/sp.efsa.2017.en-1283
Wilkin PJ (1989) The medicinal leech, Hirudo medicinalis (Hirudinea: Gnathobdellae), at Dungeness, Kent. Bot J Linn Soc 101(1):45–57. https://doi.org/10.1111/j.1095-8339.1989.tb00135.x
Yang L, Mayden RL, Sado T, He S, Saitoh K, Miya M (2010) Molecular phylogeny of the fishes traditionally referred to Cyprinini sensu stricto (Teleostei: Cypriniformes). Zool Scr 39:527–550
Acknowledgments
This work would not have been possible without the dedication of Wildlife Officer Mark McIntyre and the Wildlife Enforcement Branch of Environment and Climate Change Canada, for the seizure, care, and delivery of the leeches. Lily Berniker assisted in the processing and maintenance of leeches at the American Museum of Natural History.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Williams, K.M., Barkdull, M., Fahmy, M. et al. Caught red handed: iDNA points to wild source for CITES-protected contraband leeches. Eur J Wildl Res 66, 80 (2020). https://doi.org/10.1007/s10344-020-01419-5
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10344-020-01419-5