Skip to main content

Wildlife and infrastructure: impact of wind turbines on bats in the Black Sea coast region


In Eastern Europe, wind energy production is currently promoted as an important source of renewable energy, yet in most cases without appropriate consideration of the negative impacts wind turbines (WT) may have on protected species such as bats. Here, we present first data on fatality rates, fatality factors and the likely origin of bats killed by WT in the Dobrogea region (Romania), located in a major migratory corridor for wildlife in Eastern Europe. Over a 4-year period, we found a total of 166 bat carcasses from 10 species, mostly representing migratory species such as Pipistrellus nathusii and Nyctalus noctula. Most fatalities at WT occurred in July and August. We documented 15 cases of barotrauma and 34 cases of blunt-force trauma in carcasses found below WT. After adjusting for carcass removals and variations in searcher efficiency, we estimated for the 4-year study period a total of 2394 bat casualties at the studied WT facility consisting of 20 units, resulting in a mean fatality rate of 30 bats/WT/year, or 14.2 bats/MW/year. By implementing a curtailment measure at wind speeds below 6.5 m/s, we reduced fatality rates by 78%. Isoscape origin models based on hydrogen stable isotope ratios in fur keratin revealed that the majority of N. noctula that were killed by WT or captured nearby in mist nets originated from distant areas in the North (Ukraine, Belarus, Russia). The estimated high fatalitjegangy rates of bats at WT in this area have far-reaching consequences, particularly for populations of migratory bats, if no appropriate mitigation schemes are practised.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. Amorim F, Rebelo H, Rodrigues L (2012) Factors influencing bat activity and mortality at a wind farm in the Meditterranean region. Acta Chiropterologica 14(2):439–457.

    Article  Google Scholar 

  2. Arnett EB, Huso M, Schirmacher MR, Hayes JP (2011) Altering turbine speed reduces bat mortality at wind-energy facilities. Front Ecol Environ 9:209–214.

    Article  Google Scholar 

  3. Arnett EB, Baerwald EF, Mathews F, Rodrigues L, Rodríguez-Durán A, Rydell J, Villegas-Patraca R, Voigt CC (2016) Impacts of wind energy development on bats: a global perspective. In: Voigt CC, Kingston T (eds) Bats in the Anthropocene: conservation of Bats in a changing world. Springer International Publishing, pp 295–323

  4. Baerwald EF, Patterson WP, Barclay RMR (2014) Origins and migratory patterns of bats killed by wind turbines in southern Alberta: evidence from stable isotopes. Ecosphere 5:1–17.

    Article  Google Scholar 

  5. Barclay, R.M.R., Baerwald, E.F., Rydell, J. (2017) Bats, Chapter 9 in Wildlife and wind farms: conflicts and solutions, volume 1 (M. Perrow, ed)

  6. Barnes RS, Hill M, Peters K (2018) Wind energy and bat conservation – a review by the Canadian Wind Energy Association. Document No.: 10017086-HOU-R-01-F, pp 253

  7. Behr O, Brinkmann R, Hochradel K, Mages J, Korner-Nievergelt F, Niermann I, Nagy M (2017) Mitigating bat mortality with turbine-specific curtailment algorithms: a model based approach. In: Köppel J (ed) Wind energy and wildlife interactions. Springer, Cham, pp 135–160.

    Chapter  Google Scholar 

  8. Benda P, Ivanova T, Horáček I, Hanák V, Červený J, Gaisler J, Gueorguieva A, Petrov B, Vohralík V (2003) Bats (Mammalia:Chiroptera) of the eastern Mediterranean, part 3, review of bat distribution in Bulgaria. Acta Soc Zool Bohem 67:245–357

    Google Scholar 

  9. Benítez-López AAR, Verweij PA (2010) The impacts of roads and other infrastructure on mammal and bird populations: a meta-analysis. Biol Conserv 143(6):1307–1316

    Article  Google Scholar 

  10. Bernardino J, Bispo R, Costa H, Mascarenhas M (2013) Estimating bird and bat fatality at wind farms: a practical overview of estimators, their assumptions and limitations. New Zealand Journal of Zoology 40:63–74.

    Article  Google Scholar 

  11. Blohm T, Heise G (2008) Uckermärkische Mückenfledermäuse, Pipistrellus pygmaeus (Leach, 1825) teils Fernwanderer, teils standorttreu. Nyctalus 13:263–266

    Google Scholar 

  12. Bonn (1979) Convention on the conservation of migratory species of wild animals. UNEP/CMS Secretariat, Bonn

  13. Bosso L, Ancillotto L, Smeraldo S, D’Arco S, Migliozzi A, Conti P, Russo D (2018) Loss of potential bat habitat following a severe wildfire: a model-based rapid assessment. Int J Wildland Fire 27(11):756–769.

    Article  Google Scholar 

  14. Bowen GJ, Wassenaar LI, Hobson KA (2005) Global application of stable hydrogen and oxygen isotopes to wildlife forensics. Oecologia 143:337–348.

    Article  PubMed  Google Scholar 

  15. Brinkmann R, Behr O, Niermann I, Reich M (2011) Entwicklung von Methoden zur Untersuchung und Reduktion des Kollisionsrisikos von Fledermausen an onshore-Windenergieanlagen. Schriftenreihe Institut fur Umweltplanung. Cuvillier Verlag Gottingen, p 457

  16. Burnham KP, Anderson DR (2002) Model selection and inference: a practical information-theoretic approach, vol 355. Springer, New York.

    Book  Google Scholar 

  17. Carmen G, Chachula OM (2013) Fauna monitoring studies and the development of wind farms in Romania. Studii și Comunicări, Muzeul Olteniei, Ştiinţele Naturii 29:97–203

    Google Scholar 

  18. Courtiol A, Rousset F, Rohwäder MS, Soto DX, Lehnert LS, Voigt CC, Hobson KA, Wassenaar LI, Kramer-Schadt S (2019) Isoscape computation and inference of spatial origins with mixed models using the R package IsoriX. In: Tracking animal migration with stable isotopes (pp 207–236). Academic Press

  19. Croitoru EO, Zamfir AI (2014) Management challenges for sustainable development. Proceedings of the 8th International Management Conference, November 6-7th, Bucharest, Romania, pp. 627-634

  20. Cryan PM, Barclay RMR (2009) Causes of bat fatalities at wind turbines: hypotheses and predictions. J Mammal 90:1330–1340

    Article  Google Scholar 

  21. Cryan PM, Brown AC (2007) Migration of bats past a remote island offers clues toward the problem of bat fatalities at wind turbines. Biol Conserv 139:1–11.

    Article  Google Scholar 

  22. Cryan PM, Bogan MA, Rye RO, Landis GP, Kester CL (2004) Stable hydrogen isotope analysis of bat hair as evidence for seasonal molt and long-distance migration. Journal of Mammology 85:995–1001.

    Article  Google Scholar 

  23. Dalthorp DH, Simonis J, Madsen L, Huso MM, Rabie P, Mintz JM, Wolpert R, Studyvin J, Korner-Nievergelt F (2018) Generalized estimator of mortality (GenEst) - R Package: U.S. Geological Survey Software Release.

  24. Dietz C, Helversen O (2004) Illustrated identification key to the bats of Europe. Electronic Publication V1.0, Germany, pp 35

  25. Dietz C, Helversen O, Nill D (2009) Bats of Britain, Europe & Northwest Africa. English edition, London: A & C Black Publishers Ltd, pp 400

  26. Dincer I (2000) Renewable energy and sustainable development: a crucial review. Renew Sust Energ Rev 4(2):157–175

    Article  Google Scholar 

  27. Dodelin B (2002) Identification des Chiroptères de France á partir de restes osseux, Fédération Française de Spéléologie, pp 48

  28. Erickson JL, West SD (2002) The influence of regional climate and nightly weather conditions on activity patterns of insectivorous bats. Acta Chiropterologica 4:17–24.

    Article  Google Scholar 

  29. Fahrig L, Rytwinski T (2009) Effects of roads on animal abundance: an empirical review and synthesis. Ecol Soc 14(1)

  30. Fraser EE, Longstaffe FJ, Fenton MB (2013) Moulting matters: the importance of understanding moulting cycles in bats when using fur for endogenous marker analysis. Can J Zool 91:533–544.

    Article  Google Scholar 

  31. Frick WF, Baerwald EF, Pollock JF, Barclay RMR, Szymanski JA, Weller TJ, Russell AL, Loeb SC, Medellin RA, McGuire LP (2017) Fatalities at wind turbines may threaten population viability of a migratory bat. Biol Conserv 209:172–177.

    Article  Google Scholar 

  32. Gashchak S, Vlaschenko A, Eśtok P, Kravchenko K (2015) New long-distance recapture of a noctule (Nyctalus noctula) from eastern Europe. Hystrix, the Italian Journal of Mammalogy 26:59–60.

    Article  Google Scholar 

  33. Haarsma AJ (2008) Manual for assessment of reproductive status, age and health in European Vespertilionid bats, Hillegom, Holland, Electronic Publication Version 1, pp 62

  34. Hanák V, Benda P, Ruedi M, Horáček I, Sofianidou ST (2001) Bats (Mammalia:Chiroptera) of the Eastern Mediterranean, Part 2, New records and review of distribution of bats in Greece, Česká zoologická společnost, pp 68

  35. Hayes MA (2013) Bats killed in large numbers at United States wind energy facilities. BioScience 63:975–979.

    Article  Google Scholar 

  36. Hobson KA (1999) Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia 120:314–326.

    Article  PubMed  Google Scholar 

  37. Huso M, Dalthorp D (2014) Accounting for unsearched areas in estimating wind turbine-caused fatality. J Wildl Manag 78(2):347–358

    Article  Google Scholar 

  38. Huso M, Nicholas S, Lew L (2012) Fatality estimator user’s guide (ver. 1.1, December 2015). U.S. Geological Survey Data Series 729, pp 22.

  39. Huso M, Dalthorp D, Miller TJ, Bruns D (2016) Wind energy development: methods to assess bird and bat fatality rates postconstruction. Human-Wildlife Interactions 10:62–70

    Google Scholar 

  40. Hutterer R, Ivanova T, Meyer-Cords C, Rodrigues L (2005) Bat migration in Europe, a review of banding data and literature. Landwirtschaftsvlg Münster, pp 162

  41. Ilyin VY (1990) The seasonal shedding of Pipistrellus nathusii and Nyctalus noctula. In Ilyin YV, Strelkov PP, Rodionov VA (ed). Proceedings of the Fifth All-Union Bat Conference, Penza, Russia, Penza State Educational Institute, pp 86–89

  42. Kunz TH, Parsons S (2009) Ecological and behavioral methods for the study of bats, 2nd edn. The Johns Hopkins University Press, Baltimore, p 901

    Google Scholar 

  43. Lehnert LS, Kramer-Schadt S, Schönborn S, Lindecke O, Niermann I, Voigt CC (2014) Wind farm facilities in Germany kill noctule bats from near and far. PLoS One 9:e103106.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Lehnert LS, Kramer-Schadt S, Teige T, Hoffmeister U, Popa-Lisseanu A, Bontadina F, Ciechanowski M, Dechmann DKN, Kravchenko K, Presetnik P, Starrach M, Straube M, Zöphel U, Voigt CC (2018) Variability and repeatability of noctule bat migration in Central Europe: evidence for partial and differential migration. Proc R Soc B 285:20182174

    Article  Google Scholar 

  45. Măntoiu DȘ, Chişamera GB, Chachula OM, Mărginean G, Pocora I, Pocora V, Hodor C, Stanciu CR, Popescu-Mirceni R, Telea A, Bălăşoiu D, Şandric IC (2015) A bat fatality risk model at wind farms in Dobrogea, Romania , using a GIS approach. 4Th Inernational Berlin Bat Meeting, 13-15th March, Berlin, Germany, pp 116

  46. Martin CM, Arnett EB, Stevens RD, Wallace MC (2017) Reducing bat fatalities at wind facilities while improving the economic efficiency of operational mitigation. J Mammal 98:378–385.

    Article  Google Scholar 

  47. Nellemann C, Vistnes I, Jordhøy P, Strand O (2001) Winter distribution of wild reindeer in relation to power lines, roads and resorts. Bio Consevr 101(3):351–360

  48. Nghiem A, Mbistrova A, Pineda I, Tardieu P (2017) Wind Europe, Wind in power. 2016 European Statistics, Brusseles, Blegium, pp 24

  49. Moreau RE (1972) Palearctic African bird migration systems. Academic Press Inc, p 384

  50. O’Shea TJ, Cryan PM, Hayman DTS, Plowright RK, Streicker DG (2016) Multiple mortality events in bats: a global review. Mammal Rev 46:175–190.

    Article  Google Scholar 

  51. Panutin KK (1980) Bats. In Kucheruk VV (ed) Results of mammals banding, Moscow, USSR, pp 23–46

  52. Popa-Lisseanu AG, Sörgel K, Luckner A, Wassenaar LI, Ibáñez C, Kramer-Schadt S, Ciechanowski M, Tamás G, Niermann I, Beuneux G, Mysłajek RW, Juste J, Fonderflick J, Kelm DH, Voigt CC (2012) A triple-isotope approach to predict the breeding origins of European bats. PLoS One 7:e30388.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

  54. Rodrigues L et al. (2014), UNEP/EUROBATS Publication Series No. 6, Guidelines for consideration of bats in wind farm projects, revision 2014, ISBN 978-92-95058-30-9, pp 133

  55. Rodrigues L et al. (2017) UNEP/EUROBATS IWG - Report of the Intersessional Working Group on wind turbines and bat population, Doc. EUROBATS AC 22.10 In 22th Meeting of the Advisory Committee, Belgrade, Serbia, 27–29 March 2017.

  56. Rollins KE, Meyerholz DK, Johnson GD, Capparella AP, Loew SS (2012) A forensic investigation into the etiology of bat mortality at a wind farm : barotrauma or traumatic injury? Vet Pathol 49:362–371.

    CAS  Article  PubMed  Google Scholar 

  57. Rydell J, Bach L, Dubourg-Savage MJ, Green M, Rodrigues L, Hedenström A (2010) Bat mortality at wind turbines in northwestern Europe. Acta Chiropterologica 12:261–274.

    Article  Google Scholar 

  58. Sánchez-Zapata JA, Clavero M, Carrete M, DeVault TL, Hermoso V, Losada MA, Polo MJ, Sánchez-Navarro S, Pérez-García JM, Botella F, Ibáñez C, Donázar JA (2016) Effects of renewable energy production and infrastructure on wildlife, Current Trends in Wildlife Research, Springer, Cham, 97–123

  59. Santos H, Rodrigues L, Jones G, Rebelo H (2013) Using specis distribution modelling to predict bat fatality risk at wind farms. Biol Conserv 157:178–186

    Article  Google Scholar 

  60. Sikes RS, Gannon WL (2011) Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J Mammal 92:235–253.

    Article  Google Scholar 

  61. Spellerberg IAN (1998) Ecological effects of roads and traffic: a literature review. Global Ecology & Biogeography Letters 7(5):317–333

    Article  Google Scholar 

  62. Strelkov PP (1969) Migratory and stationary bats (Chiroptera) of the European part of the Soviet Union. Acta Zool Cracov 14:393–436

    Google Scholar 

  63. Strelkov PP (1997) Breeding area and its position in range of migratory bats species (Chiroptera, Vespertilionidae) in East Europe and adjacent territories. Communication 1. Zoologicheskii Zhurnal 76:1073–1082

  64. Strelkov PP (1999) Correlation of sexes in adult individuals of migratory bat species (Chiroptera, Vespertilionidae) from Eastern Europe and adjacent territories. The Journal of Zoology 78:1441–1454

    Google Scholar 

  65. Strelkov PP (2000) Seasonal distribution of migratory bat speceis (Chiroptera, Vespertilionidae) in Eastern Europe and adjacent territories: nursing area. Myotis 37:7–25

    Google Scholar 

  66. Strelkov PP (2002) Material on wintering of migratory bat species (Chiroptera) on the territory of the former USSR and adjacent regions, part 2, Nyctalus noctula. Plecotus 5:35–56

    Google Scholar 

  67. Strelkov PP, Abramov AV (2001) Sexual and age proportion of males in different parts of the range in migratory bat species (Chiroptera, Vespertilionidae) from Eastern Europe and adjacent territories during nursing period. Russian Journal of Zoology 80:222–229

    Google Scholar 

  68. Sullivan AR, Bump JK, Kruger LA, Peterson RO (2012) Bat‐cave catchment areas: using stable isotopes (δD) to determine the probable origins of hibernating bats. Ecol Appl 22(5):1428–1434

  69. US Fish and Wildlife Service (2011) US fish and wildlife service draft land-based wind energy guidelines. US fish and wildlife service, Washington, DC

  70. Vlaschenko AS, Kravchenko K, Prylutska AS (2013) Prediction of the future fatalities : bats and wind energy in Ukraine. Conference on Wind Power and Enviromental Impacts, Stockholm, 5-7th February. pp 109–110

  71. Vlaschenko AS, Kravchenko K, Prylutska AS, Ivancheva Em Sitnikova E, Mishin A (2016) Structure of summer bat assemblages in forests in European Russia. Turk J of Zool 40:1–18.

    Article  Google Scholar 

  72. Voigt CC, Popa-Lisseanu AG, Niermann I, Kramer-Schadt S (2012) The catchment area of wind farms for European bats: a plea for international regulations. Biol Conserv 153:80–86.

    Article  Google Scholar 

  73. Voigt CC, Lehnert LS, Popa-Lisseanu AG, Ciechanowski M, Estók P, Gloza-Rausch F, Görföl T, Göttsche M, Harrje C, Hötzel M, Teige T, Wohlgemuth R (2014) The trans-boundary importance of artificial bat hibernacula in managed European forests. Biodivers Conserv 23:617–631.

    Article  Google Scholar 

  74. Voigt CC, Lehnert LS, Petersons G, Adorf F, Bach L (2015) Wildlife and renewable energy: German politics cross migratory bats. Eur J Wildl Res 61:213–219.

    Article  Google Scholar 

  75. Zimmerling JR, Francis CM (2016) Bat mortality due to wind turbines in Canada. J Wildl Manag 80:1360–1369.

Download references


We would like to thank the Babadag Wind Park managers for giving us full access to environmental data and for the long-term collaboration regarding conservation actions of bats in the region. We thank Doris Fichte and Yvonne Klaar for their help in the stable isotope laboratory. We thank Stephanie Kramer-Schadt for the help with statistical analysis. We thank Manuela Huso (United States Geological Survey) for help regarding the estimation of fatality rates. We acknowledge the work done by Marius Alexandru Ciocănău, at the Faculty of Veterinary and Agricultural Sciences, University of Bucharest, Romania, for identifying the cause of death for the bat carcasses. Other valuable field activities were conducted with the help of Liviu Bufnilă, Marcel Ţîbîrnac, Mihai Ventoniuc, Gabriel Chişamera and Alexandra Doba. We are grateful to the anonymous reviewers for their suggestions that improved the manuscript.


Oana Teodora Moldovan was supported by a grant of the Ministry of Research and Innovation, CNCS - UEFISCDI, project number PN-III-P4-ID-PCCF-2016-0016, within PNCDI III. Kseniia Kravchenko expresses gratitude to The German Federal Ministry of Education and Research (BMBF) for Green Talents Award 2015 which provided great opportunity of research stay at IZW. The field visit of Kseniia Kravchenko and Anton Vlaschenko to Romania were supported by EUROBATS project initiative in the frame of ‘Trans-border collaboration in bat migration research in Eastern Europe and the Black Sea region, 2014’ project.

Author information



Corresponding author

Correspondence to Dragoş Ştefan Măntoiu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Road Ecology Guest Editor: Marcello D’Amico

Electronic supplementary material


(PDF 855 kb)



The list of bat mortalities at the Babadag Wind Park, 2013–2016

Abbreviations: Bat species acronyms: ESER – Eptesicus serotinus; HSAV – Hypsugo savii; MYOSP – Myotis sp.; NLEI – Nyctalus leisleri; NNOC – Nyctalus noctula; PKUL – Pipistrellus kuhlii; PNAT – Pipistrellus nathusii, PPIP – Pipistrellus pipistrellus; PPYG – Pipistrellus pygmaeus, PIPSP – Pipistrellus sp.; VMUR – Vespertilio murinus. Structure of citation: date (mm/yy), species, no. individuals (in the case of isolated individuals, no numbers have been aded), sex (♀- female, ♂ - male), age (ad – adult, sad-sub adult, juv – juvenile). In case of missing data, the n/a (not available) symbol was used, for example: PNAT n/a – no information about sex and age, or PNAT ♂n/a – no information about age. Each sex-age-n/a group was divided by a coma. Species belonging to the same date were delimited by semicolons and different months were delimited by a point

4.13 – PNAT ♂n/a, ♀n/a, n/a; PPIP ♂n/a, n/a ad; PIPSP n/a; VMUR n/a ad; NNOC ♂n/a. 05.13 – PNAT 2n/a. 06.13 – PNAT 2n/a; PPIP n/a; PIPSP n/a. 07.13 – PKUL ♂ad; PIPSP n/a ad, 2n/a; VMUR 3n/a. 08.13 – PNAT 3♂ad, 2♀ad, n/a juv; PKUL 2♂ad, n/a ad; PPYG ♂ad, n/a ad; PIPSP ♂juv, n/a juv, n/a ad, 3 n/a; NNOC ♂ad, 3♀ad, 2n/a; VMUR ♂ad, 3n/a. 04.14 – PNAT 7♂ad, ♂n/a, 4♀ad. 05.14 – PNAT 3♂ad, ♀ad; PKUL 2♂ad; PIPSP ♂ad; MYOSP n/a ad, ♂ad. 06.14 – PNAT 2♂ad, 2♀ad; NNOC ♀ad; NLEI 2♀n/a. 07.14 – PNAT ♂ad, n/a; PIPSP ♀ad; ESER ♂ad; NNOC ♂ad, ♂n/a, n/a ad, 2n/a; NLEI ♂ad, ♀n/a, n/a ad. 08.14 – PNAT ♀ad, ♂juv, 2n/a ad; HSAV ♂n/a; NNOC 2♂ad, ♀ad, n/a ad, 2n/a. 09.14 – PNAT 2♂ad, 3♀ad; PPYG n/a ad; PIPSP n/a ad; NNOC ♂ad, ♀ad, 2n/a ad, n/a; HSAV n/a. 10.14 – PNAT ♂ad, ♂n/a, n/a ad; NNOC ♀ad, 2n/a ad, n/a. 11.14 – PNAT ♀ad. 04.15 – PNAT ♂ad; NNOC ♀ad. 05.15 – PNAT ♂ad, PIPSP 2n/a, VMUR n/a ad. 06.15 – NNOC n/a. 07.15 – PNAT ♂ad; PIPSP 3n/a. 08.15 – PNAT ♂ad, 2♀ad; NNOC 2♂ad, 2n/a ad. 09.15 – PIPSP 3n/a. 5.16 – PNAT ♂ad; PPYG ♂n/a, PIPSP 2n/a; NNOC ♀ad. 7.16 – PNAT ♂ad; NNOC ♀ad; NLEI ♂ad.; VMUR n/a. 8.16 – PNAT ♂n/a; PPIP ♂ad; PIPSP 3n/a; NNOC 3♂ad, ♀ad, 2n/a. 9.16 – PNAT ♂ad; PPYG ♀n/a; PIPSP n/a; NNOC 2♀ad, n/a.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Măntoiu, D.Ş., Kravchenko, K., Lehnert, L.S. et al. Wildlife and infrastructure: impact of wind turbines on bats in the Black Sea coast region. Eur J Wildl Res 66, 44 (2020).

Download citation


  • Bat migration
  • Wind energy
  • Infrastructure
  • Post-construction monitoring
  • Stable isotopes
  • Nyctalus noctula