Skip to main content

Diet of the marsh deer in the Paraná River Delta, Argentina—a vulnerable species in an intensive forestry landscape

Abstract

The marsh deer (Blastocerus dichotomus) is the largest deer native to South America, occurring in wetlands and marshy habitats. The southernmost population of the species is found in the Paraná River Delta, Argentina, in a wetland system highly modified by intensive forestry activity. Foresters perceive high levels of economic losses attributed to deer herbivory which drives marsh deer poaching. We carried out the first study of the dietary composition of the marsh deer in this wetland by using microhistological analysis of feces collected seasonally. Seventy-three food items were identified in the marsh deer diet, but only eight had frequencies of > 3% in the annual diet. Macrophytes dominated the diet throughout the year (seasonal percent frequencies 31–42%) due to the high occurrence of Ludwigia bonariensis (24% of average seasonal frequency). Trees, vines, forbs, and shrubs contributed less frequently to the diet, while grasses and grass-like plants were marginally represented (i.e., < 2%). Exotic plant species comprised 38% of the annual diet, and tree species of commercial importance (Salix sp. and Populus R22) were poorly represented (≤ 5.5% per season). The marsh deer in this wetland could be categorized as a browser, differing from the feeding behavior reported for the species in the Brazilian Pantanal (grazer–browser) and suggesting a trophic elasticity in this cervid. Since commercial tree species comprised a very small portion of the diet of this deer, a change in producers’ perception toward the species is needed to diminish this conflict, and our data are important to develop context-specific conservation and management solutions.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Ainalis AB, Tsiouvaras CN, Nastis AS (2006) Effect of summer grazing on forage quality of woody and herbaceous species in a silvopastoral system in northern Greece. J Arid Environ 67:90–99

    Article  Google Scholar 

  2. Alipayo D, Valdez R, Holechek J, Cardenas M (1992) Evaluation of microhistological analysis for determining ruminant diet botanical composition. J Range Manag 45:148–152

    Article  Google Scholar 

  3. Baigún CRM, Puig A, Minotti PG, Kandus P, Quintana RD, Vicari R, Bó RF, Oldani NO, Nestler JA (2008) Resource use in the Parana River Delta (Argentina): moving away from an ecohydrological approach? Ecohydrol Hydrobiol 8:245–262

    Article  Google Scholar 

  4. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  5. Baumgartner LL, Martin AC (1939) Plant histology as an aid in squirrel food-habitat studies. J Wildl Manag 3:266–268

    Article  Google Scholar 

  6. Beccaceci MD (1996) Dieta del ciervo de los pantanos, Blastocerus dichotomus, en la reserva del Iberá, Corrientes, Argentina. Mastozool Neotrop 3:193–197

    Google Scholar 

  7. Boeckler GA, Gershenzon J, Unsicker SB (2011) Phenolic glycosides of the Salicaceae and their role as anti-herbivore defenses. Phytochemistry 72:1497–1509

    CAS  PubMed  Article  Google Scholar 

  8. Braccini CL, Vega AS, Chludil HD, Leicach SR, Fernández PC (2013) Host selection, oviposition behaviour and leaf traits in a specialist willow sawfly on species of Salix (Salicaceae). Ecol Entomol 38:617–626

    Article  Google Scholar 

  9. Bull PC (1981) The consequences for wildlife of expanding New Zealand’s forest industry. N Z J For 26:210–231

    Google Scholar 

  10. Colwell RK, Futuyma DJ (1971) On the measurement of niche breadth and overlap. Ecology 52:567–576

    PubMed  Article  Google Scholar 

  11. Conover MR (1997) Monetary and intangible valuation of deer in the United States. Wildl Soc Bull 25:298–305

    Google Scholar 

  12. Conover MR (2001) Resolving human–wildlife conflicts: the science of wildlife damage management. CRC Press, Boca Raton

    Book  Google Scholar 

  13. Costa SS, Oliveira DB, Manco AM, De Melo GO, Cordeiro JLP, Zaniolo S, Negrelle R, Oliveira LFB (2006) Plants composing the diet of marsh and pampas deer in the Brazilian Pantanal wetland and their ethnomedicinal properties. J Biol Sci 6:840–846

    Article  Google Scholar 

  14. Cote SD, Rooney TP, Tremblay JP, Dussault C, Waller DM (2004) Ecological impacts of deer overabundance. Annu Rev. Ecol Evol Syst 35:113–147

    Article  Google Scholar 

  15. Dacar MA, Giannoni SM (2001) A simple method for preparing references slides of seed. J Range Manag 54:191–193

    Article  Google Scholar 

  16. Duarte JMB, Varela D, Piovezan U, Beccaceci MD Garcia JE (2016) Blastocerus dichotomus. The IUCN Red List of Threatened Species 2016: e.T2828A22160916. https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T2828A22160916.en. Accessed 08 April 2019

  17. Eldridge WD, MacNamara MM, Pacheco NV (1987) Activity patterns and habitat utilization of pudus (Pudu puda) in south-central Chile. In: Wemmer CM (ed) Biology and management of the Cervidae. Smithsonian Institution Press, Washington, D.C., pp 352–370

    Google Scholar 

  18. Fracassi N., Quintana R.D., Pereira J.A., Mujica G. (2014). Estrategias de Conservación de la Biodiversidad en Plantaciones Forestales de Salicáceas del Bajo Delta del Paraná. INTA, Buenos Aires

  19. Harrison XA (2015) A comparison of observation-level random effect and beta-binomial models for modelling overdispersion in binomial data in ecology & evolution. PeerJ 3:e1114. https://doi.org/10.7717/peerj.1114

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hill CM (2004) Farmers’ perspectives of conflict at the wildlife–agriculture boundary: some lessons learned from African subsistence farmers. Hum Dimens Wildl 9:279–286

    Article  Google Scholar 

  21. Hofmann RR (1985) Digestive physiology of the deer - their morphophysiological specialisation and adaptation. In: Drew K, Fennessy P (eds) Biology of deer production. Royal Society New Zealand Bull 22:393–407

  22. Hofmann RR (1989) Evolutionary steps of ecophysiological adaptation and diversification of ruminants: a comparative view of their digestive system. Oecologia 78:443–457

    CAS  PubMed  Article  Google Scholar 

  23. Hofmann RR, Stewart DRM (1972) Grazer or browser: a classification based on the stomach structure and feeding habits of east African ruminants. Mammalia 36:226–240

    Article  Google Scholar 

  24. Holechek JL, Gross BD (1982) Evaluation of different calculation procedures for microhistological analysis. J Range Manag 35:721–723

    Article  Google Scholar 

  25. Hurlbert SH (1978) The measurement of niche overlap and some relatives. Ecology 59:67–77

    Article  Google Scholar 

  26. Iezzi ME, Fracassi NG, Pereira JA (2018) Conservation of the largest cervid of South America: interactions between people and the vulnerable marsh deer Blastocerus dichotomus. Oryx 52:654–660

    Article  Google Scholar 

  27. Kalesnik FA, Malvárez AI (2004) Las especies exóticas invasoras en los sistemas de humedales. El caso del Delta inferior del Río Paraná. Insugeo, Miscelánea 12:131–138

    Google Scholar 

  28. Kandus P, Malvárez AI (2004) Vegetation patterns and change analysis in the lower delta islands of the Paraná River (Argentina). Wetlands 24:620–632

    Article  Google Scholar 

  29. Lankau RA, Rogers WE, Siemann E (2004) Constraints on the utilization of the invasive Chinese tallow tree Sapium sebiferum by generalist native herbivores in coastal prairies. Ecol Entomol 29:66–75

    Article  Google Scholar 

  30. Lindenmayer DB, Hobbs RJ (2004) Fauna conservation in Australian plantation forests, a review. Biol Conserv 119:151–168

    Article  Google Scholar 

  31. Machado MRF, Leal LM, Sasahara THC, Oliveira FS, Duarte JMB, Okuda HT (2015) Morfologia do estômago do cervo-do-pantanal (Blastocerus dichotomus, Illiger 1815). Arquivo Brasileiro de Medicina Veterinariae Zootecnia 67:424–432

    Article  Google Scholar 

  32. Magnusson A, Skaug H, Nielsen A, Berg C, Kristensen K, Maechler M, Van Bentham K, Bolker B, Brooks M (2017) Package ‘glmmTMB’, Generalized Linear Mixed Models using Template Model Builder. https://CRAN.R-project.org/package=glmmTMB

  33. Mc Innis M, Vavra M, Krueger WC (1983) A comparison of four methods used to determine the diets of large herbivores. J Range Manag 36:302–306

    Article  Google Scholar 

  34. Merino ML, Semeñiuk MB, Olocco Diz MJ, Meier D (2009) Utilización de un cultivo de soja por el venado de las pampas (Ozotoceros bezoarticus Linnaeus, 1758), en la provincia de San Luis, Argentina. Mastozool Neotrop 16:347–354

    Google Scholar 

  35. Merler J, Diuk Wasser MA, Quintana RD (2001) Winter diet of dusky-legged guan (Penelope obscura) at the Paraná River Delta Region. Stud Neotropical Fauna Environ 36:33–38

    Article  Google Scholar 

  36. Naughton-Treves L (1997) Farming the forest edge: vulnerable places and people around Kibale National Park, Uganda. Geogr Rev 87:27–46

    Article  Google Scholar 

  37. Ohashi H, Yoshikawa M, Oono K, Tanaka N, Hatase Y, Murakami Y (2014) The impact of sika deer on vegetation in Japan: setting management priorities on a national scale. Environ Manag 54:631–640

    Article  Google Scholar 

  38. Olivas SM, Vital GC, Flores MJ (2013) Métodos para determinar la composición de la dieta en venados: Comparación de su efectividad y factibilidad. Revista Bio Ciencias 2(4):252–260

    Google Scholar 

  39. Oliveira LD, Barbanti Duarte JM (2006) Gastro-intestinal transit time in South American deer. Zoo Biol 25:47–57

    Article  Google Scholar 

  40. Ozaki M, Suwa G, Kaji K, Ohba T, Hosoi E, Koizumi T, Takatsuki S (2007) Correlations between feeding type and mandibular morphology in the sika deer. J Zool 272:244–257

    Article  Google Scholar 

  41. Pereira JA, Fergnani D, Fernández V, Fracassi NG, González V, Lartigau B, Marín V, Tellarini J, Varela D, Wolfenson L (2018) Introducing the “Pantano Project” to conserve the southernmost population of the marsh deer. Deer Specislist Group News (IUCN-SSC-Deer Specislist Group Newsletter) 30:15–21

  42. Pinder L, Grosse AP (1991) Blastocerus dichotomus. Mamm Species 380:1–4

    Article  Google Scholar 

  43. Piovezan U, Tiepolo LM, Tomas WM, Duarte JMB, Varela D, Marinho Filho JS (2010) Marsh deer Blastocerus dichotomus (Illiger, 1815). In: Duarte JMB, González S (eds) Neotropical cervidology: biology and medicine of Latin American deer. Funep/IUCN, Jaboticabal, pp 66–76

    Google Scholar 

  44. Quintana RD, Bó RF, Astrada E, Reeves C (2014) Lineamientos para una Ganadería Ambientalmente Sustentable en el Delta del Paraná. Fundación para la conservación y el uso sustentable de los humedales/Wetlands International LAC, Buenos Aires, Argentina

  45. Redpath SM, Bhatia S, Young J (2015) Tilting at wildlife: reconsidering human–wildlife conflict. Oryx 49:222–225

    Article  Google Scholar 

  46. Richard E, Juliá JP, Acenolaza P (1995) Hábitos frugívoros de la corzuela parda (Mazama gouzoubira, Fisher, 1824) (Mammalia: Cervidae), en un ambiente secundario de Yungas. Doñana, Acta Vertebrata 22(1–2):19–28

    Google Scholar 

  47. Rossi CA, De Magistris AA, González GL, Carou NE, De Loof EP (2014) Plantas de interés ganadero de la región del bajo delta del Paraná (Argentina). UNLZ, Facultad de Ciencias Agrarias, Buenos Aires

    Google Scholar 

  48. Sánchez MD (2002) Mulberry for animal production. FAO animal production and health paper 147. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  49. Servicio Meteorológico Nacional (2015) Estadística Climatológica. Fuerza Aérea Argentina, Argentina. https://www.smn.gob.ar/clima/atlasclimatico. Accessed 08 April 2019

  50. Shah GM, Qadri MY, Yousuf AR (1983) Winter diets of Hangul-deer (Cervus elaphus hanglu Wagner) at Dachigam National Park, Kashmir. J Indian Inst Sci 64:129–136

    Google Scholar 

  51. Sica YV, Quintana RD, Radeloff VC, Gavier-Pizarro GI (2016) Wetland loss due to land use change in the lower Paraná River Delta, Argentina. Sci Total Environ 568:967–978

    CAS  PubMed  Article  Google Scholar 

  52. Siemann E, Rogers WE (2003) Reduced resistance of invasive varieties of the alien tree Sapium sebiferum to a generalist herbivore. Oecologia 135:451–457

    PubMed  Article  Google Scholar 

  53. Siex KS, Struhsaker TT (1999) Colobus monkeys and coconuts: a study of perceived human-wildlife conflicts. J Appl Ecol 36:1009–1020

    Article  Google Scholar 

  54. Simonetti JA, Grez AA, Estades CF (2013) Providing habitat for native mammals through understory enhancement in forestry plantations. Conserv Biol 27:1117–1121

    PubMed  Article  Google Scholar 

  55. Sotala DJ, Kirkpatrick CM (1973) Foods of white-tailed deer, Odocoileus virginianus, in Martin County, Indiana. Am Midl Nat 89:281–286

    Article  Google Scholar 

  56. Takatsuki S (2009) Geographical variations in food habits of sika deer: the northern grazer vs. the southern browser. In: McCullough DR, Takatsuki S, Kaji K (eds) Sika deer: biology and management of native and introduced populations. Springer Japan, Tokyo, pp 231–237

    Chapter  Google Scholar 

  57. Tomas WM, Salis SM (2000) Diet of the marsh deer (Blastocerus dichotomus) in the Pantanal wetland, Brazil. Stud Neotropical Fauna Environ 35:165–172

    Article  Google Scholar 

  58. Varela D (2003) Distribución, Abundancia y Conservación del Ciervo de los Pantanos (Blastocerus dichotomus) en el bajo Delta del Río Paraná, Provincia de Buenos Aires, Argentina. BSc thesis. Universidad de Buenos Aires, Buenos Aires, Argentina

  59. Weber M, González S (2003) Latin American deer diversity and conservation: a review of status and distribution. Ecoscience 10:443–454

    Article  Google Scholar 

  60. Williams O (1969) An improved technique for identification of plant fragments in herbivore feces. J Range Manag 22:51–52

    Article  Google Scholar 

  61. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the following: N. Fracassi, L. Wolfenson, and E. Villegas for their assistance during fieldwork; EEA INTA—Delta del Parana for logistic support; foresters who granted us access to plantations; M. Stampacchio (MACN-CONICET) for technical assistance for specimens’ preparation; and J.J. Thompson for English review of the manuscript. A research permit (Disp. no. 068/16) was provided by Organismo Provincial para el Desarrollo Sostenible (OPDS) of Provincia de Buenos Aires (Argentina). The authors sincerely thank two anonymous reviewers for their suggestions to improve the manuscript.

Funding

The authors also acknowledge the support of the Unidad para el Cambio Rural, Ministerio de Agricultura, Ganadería y Pesca de la Nación (Argentina), for funds to conduct this work under GEF (Global Environmental Facility) 090118 TF.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Violeta C. Marin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marin, V.C., Fernández, V.A., Dacar, M.A. et al. Diet of the marsh deer in the Paraná River Delta, Argentina—a vulnerable species in an intensive forestry landscape. Eur J Wildl Res 66, 16 (2020). https://doi.org/10.1007/s10344-019-1358-3

Download citation

Keywords

  • Blastocerus dichotomus
  • Exotic species
  • Forestry plantations
  • Human–wildlife conflict
  • Wetland