Are Western European ospreys (Pandion haliaetus) shortening their migration distances? Evidence from trends of the wintering population in the Iberian Peninsula

Abstract

Here, we provide evidence that the number of Western European ospreys wintering in the Iberian Peninsula has been increasing over nearly two decades due to a reduction of the migration distances. We compared trends in wintering and breeding populations of ospreys in the Iberian Peninsula and western Europe, respectively, and we provide a detailed description of the present distribution and the numbers of ospreys wintering in the Iberian Peninsula. Observations of the species were collected as a citizen science project in January 2017. Based on the long-term data series from the Andalusian region (2004–2016) and from the Bay of Cadiz site (2000–2016), we estimated temporal trends in the population size of the ospreys wintering in these areas. Trends in the western European breeding population were derived from counts of ospreys migrating over the Strait of Gibraltar conducted by volunteers (1999–2016). All the trends were estimated by fitting a linear regression to the logarithm of the annual counts. For quantifying the origin of ospreys wintering in the Iberian Peninsula, we collected 204 confirmed field sightings of wintering ospreys in Spain and 155 in Portugal. We showed that the number of wintering ospreys has been increasing in southern Spain over the last 16 years. The magnitude of this increase is similar to the rate of change observed in the ospreys breeding across Western Europe. Recoveries of ringed birds in the Iberian Peninsula during winter indicate a reduction in the migration distances of Central and Northern European ospreys, making these birds winter at higher latitudes more than before. According to our results, this reduction in the migration distance was fairly uniform among different breeding populations in western Europe, but it did not affect all age classes equally, with juvenile birds more prone to winter at higher latitudes compared to adult birds. Our results showed that the overall number of ospreys which are shortening their migration distance, now over 3% of the total breeding population estimated for western Europe, is on an upward trend.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov B, Caski F (eds) Proceedings of the second international symposium on information theory. Akademiaiai Kiado, Budapest, pp 267–281

    Google Scholar 

  2. Alerstam T, Hake M, Kjellén N (2006) Temporal and spatial patterns of repeated migratory journeys by ospreys. Anim Behav 71:555–566. https://doi.org/10.1016/j.anbehav.2005.05.016

    Article  Google Scholar 

  3. Bai ML, Schmidt D (2012) Differential migration by age and sex in central European ospreys Pandion haliaetus. J Ornithol 153:75–84. https://doi.org/10.1007/s10336-011-0697-y

    Article  Google Scholar 

  4. Bernis F (1980) La Migración de las aves en el Estrecho de Gibraltar (Época Posnupcial). In: Aves Planeadoras, vol 1. Universidad Complutense, Madrid

    Google Scholar 

  5. Bibby C, Burgess ND, Hill DA (1992) Bird census techniques. Academic Press, London, p 257

    Google Scholar 

  6. Bierregaard RO, Poole AF, Washburn BE (2014) Ospreys (Pandion haliaetus) in the 21st century: populations, migration, management, and research priorities. In: https://doi.org/10.3356/0892-1016-48.4.301. http://www.bioone.org/doi/abs/10.3356/0892-1016-48.4.301. Accessed 11 Dec 2017

  7. Bierregaard RO, Poole AF, Martell MS, Pyle P, Patten MA (2016) Osprey (Pandion haliaetus), version 2.0. In: Rodewald PG (ed) The birds of North America. Cornell Lab of Ornithology, Ithaca, NY, USA. https://doi.org/10.2173/bna.683

    Google Scholar 

  8. Bird D, Varland D, Alonso J (1996) Raptors in human landscapes. Academic Press

  9. BirdLife International (2015) European red list of birds. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  10. BirdLife International (2017) Species factsheet: Pandion haliaetus. Downloaded from http://www.birdlife.org on 24/07/2017

  11. Blanco G, Rodriguez-Estrella R (1999) Reduced sexual plumage dimorphism in ospreys from Baja California Sur, México. Ibis 141:502–504. https://doi.org/10.1111/j.1474-919X.1999.tb04422.x

    Article  Google Scholar 

  12. Box GEP, Jenkins GM, Reinsel GC (2008) Time series analysis: forecasting and control, 4th edn. John Wiley & Sons, Upper Saddle River, NJ

    Book  Google Scholar 

  13. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer New York, New York

    Google Scholar 

  14. Cabral MJ, Almeida J, Almeida PR et al (2005) Livro Vermelho dos Vertebrados de Portugal Peixes Dulciaquícolas e Migradores, Anfíbios, Répteis, Aves e Mamíferos. Instituto da Conservação da Natureza, Lisboa

    Google Scholar 

  15. Casado E (1999) Viabilidad de la reintroducción del Aguila Pescadora (Pandion haliaetus) en costas, estuarios y pantanos de Andalucía. Technical report. Estación Biológica de Doñana (CSIC), Sevilla

    Google Scholar 

  16. Casado E, Ferrer M (2005) Analysis of reservoir selection by wintering ospreys (Pandion haliaetus haliaetus) in Andalusia, Spain: a potential tool for reintroduction. J Raptor Res 39:168–173

    Google Scholar 

  17. Catry P, Costa H, Elias G, Matias R (2010) Aves de Portugal—Ornitologia do território continental. Assírio & Alvim, Lisboa

    Google Scholar 

  18. CMAOT (2016) Programa de Emergencias, Control Epidemiológico y Seguimiento de Fauna Silvestre. In: Invernada de aves acuáticas en Andalucía 2015. Consejería de Medio Ambiente y Ordenación del Territorio, Junta de Andalucía

    Google Scholar 

  19. Cramp S, Simmons KEL (eds) (1980) The birds of the Western Palearctic, vol Vol. II. Oxford University Press, Oxford

    Google Scholar 

  20. Cristol D, Baker M, Carbone C (1999) Differential migration revisited. Latitudinal segregation by age and sex class. In: Nolan V, Ketterson E, Thompson C (eds) Current ornithology. Plenum Publishers, New York, pp 33–88

    Google Scholar 

  21. De la Cruz A, Onrubia A, Pérez B et al (2011) Seguimiento de la migración de las aves en el estrecho de Gibraltar: Resultados del Programa Migres 2009. Migres Revista de Ecología 2:65–78

    Google Scholar 

  22. Dennis R (2008) A life of ospreys. Whittles Publishing, Dunbeath

    Google Scholar 

  23. Dennis R (2016) Plan for the recovery and conservation of ospreys in Europe and the Mediterranean region in particular. In: 36th meeting Strasbourg, 15–18 November 2016. Standing Committee, Strasbourg

    Google Scholar 

  24. Domínguez J (1990) Distribution of estuarine waders wintering in the Iberian Peninsula en 1978-1982. Wader Stud Group Bull 59:25–28

    Google Scholar 

  25. Dunn EH, Hussell DJT (2009) Steps for basic analysis of daily migration counts, using multiple regression. Version 2009

    Google Scholar 

  26. Equipa Atlas (2008) Atlas das aves nidificantes em Portugal (1999–2005). Instituto de Conservação da Natureza e da Biodiversidade, Sociedade Portuguesa para o Estudo das Aves, Parque Natural da Madeira e Secretaria Regional do Ambiente e do Mar, Assírio e Alvim, Lisboa

    Google Scholar 

  27. Farmer CJ, Hussell DJT (2008) The raptor population index in practice, pp 165–178

    Google Scholar 

  28. Ferguson-Lees IJ (1963) Changes in the status of birds of prey in Europe. Br Birds 56:140–148

    Google Scholar 

  29. Ferrer M, Casado E (2014) Manuales de Desarrollo Sostenible. 14. Reintroducción del águila pescadora. Fundación Banco Santander

  30. Fuentes C, Muñoz del Viejo A, Ruiz de la Concha JI (1998) Distribución espacio-temporal y selección de hábitat del Águila pescadora Pandion haliaetus en las zonas húmedas de la cuenca media del Guadiana. In: Chancellor R, Meyburg B-U, Ferrero JJ (eds) Holarctic birds of prey. ADENEX-WWGBP, WWGP, Berlin, Germany, pp 329–338

    Google Scholar 

  31. Fundación Migres, Amigos del águila pescadora, Aves de Portugal (2017) Inveranda del águila pescadora en la península Ibérica. El Corzo Bol Soc Gad Hist Nat 5:108–116

    Google Scholar 

  32. Galarza A (2019) Primeros éxitos de la suelta de águilas pescadoras en Urdaibai. Quercus 395:56–57

    Google Scholar 

  33. Gil JM, Valenzuela G (1997) El águila pescadora en aguas interiores de Granada. Quercus 138:16–18

    Google Scholar 

  34. Glutz von Blotzheim ÜN, Bauer KM, Bezzel E (1971) Handbuch der Vögel Mitteleuropas 4. Frankfurt, p 629

  35. Gouraguine A, Moranta J, Ruiz-Frau A, Hinz H, Reñones O, Ferse SCA, Jompa J, Smith DJ (2019) Citizen science in data and resource-limited areas: a tool to detect long-term ecosystem changes. PLoS One 14:e0210007. https://doi.org/10.1371/journal.pone.0210007

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Hake M, Kjellén N, Alerstam T (2001) Satellite tracking of Swedish ospreys Pandion haliaetus: autumn migration routes and orientation. J Avian Biol 32:47–56. https://doi.org/10.1034/j.1600-048X.2001.320107.x

    Article  Google Scholar 

  37. Irwin A (2018) No PhDs needed: how citizen science is transforming research. Nature 562:480–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Janss G, Ferrer M (1999) Mitigation of raptor electrocution on steel power poles. Wildl Soc Bull 27:263–273

    Google Scholar 

  39. Jiménez JJ, de las Heras M (2015) Invernada del águila pescadora (Pandion haliaetus) en la provincia de Cádiz. SGHN 5:40–48

    Google Scholar 

  40. Klaassen RHG, Hake M, Strandberg R, Koks BJ, Trierweiler C, Exo KM, Bairlein F, Alerstam T (2014) When and where does mortality occur in migratory birds? Direct evidence from long-term satellite tracking of raptors. J Anim Ecol 83:176–184. https://doi.org/10.1111/1365-2656.12135

    Article  PubMed  Google Scholar 

  41. La Sorte FA, Thompson FR (2007) Poleward shifts in winter ranges of North American birds. Ecology 88:1803–1812

    Article  PubMed  Google Scholar 

  42. Lensink R (1997) Range expansion of raptors in Britain and the Netherlands since the 1960s: testing an individual-based diffusion model. J Anim Ecol 66:811–826. https://doi.org/10.2307/5997

    Article  Google Scholar 

  43. Link WA, Sauer JR (1997) Estimation of population trajectories from count data. Biometrics 53:488–497

    Article  Google Scholar 

  44. Mancini M, Haro G, Bucco C, Salinas V, Miquelarena A (2009) Composition and diversity of icthyofauna in la Viña reservoir (Córdoba, Argentina). Braz J Biol 69:49–55

    Article  CAS  PubMed  Google Scholar 

  45. Martin J, Kitchens W, Hines J (2007) Importance of well-designed monitoring programs for the conservation of endangered species: case study of the snail kite

  46. Martín B, Onrubia A, Ferrer M (2014) Effects of climate change on the migration behavior of the common buzzard (Buteo buteo). Clim Res. https://doi.org/10.3354/cr01233

  47. Martín B, Onrubia A, Ferrer M (2016a) Migration timing responses to climate change differ between adult and juvenile white storks across Western Europe. Clim Res 69:9–23

    Article  Google Scholar 

  48. Martín B, Onrubia A, de la Cruz A, Ferrer M (2016b) Trends of autumn counts at Iberian migration bottlenecks as a tool for monitoring continental populations of soaring birds in Europe. Biodivers Conserv 25:295–309. https://doi.org/10.1007/s10531-016-1047-4

    Article  Google Scholar 

  49. Monti F (2015) Scale-dependent approaches in conservation biogeography of a cosmopolitan raptor: the osprey. University of Ferrara/University of Montpellier, Ferrara/Montpellier, France

    Google Scholar 

  50. Monti F, Dominici JM, Choquet R, Duriez O, Sammuri G, Sforzi A (2014) The osprey reintroduction in Central Italy: dispersal, survival and first breeding data. Bird Study 61:465–473

    Article  Google Scholar 

  51. Monti F, Grémillet D, Sforzi A, Sammuri G, Dominici JM, Triay Bagur R, Muñoz Navarro A, Fusani L, Duriez O (2018) Migration and wintering strategies in vulnerable Mediterranean osprey populations. Ibis 160:554–567

    Article  Google Scholar 

  52. Moreno-Opo J (2012) Águila pescadora (Pandion haliaetus). In: SEO/Birdlife (ed) Atlas de las aves en invierno en España 2007–2010. Ministerio de Agricultura, Alimentación y Medio Ambiente-SEO/BirdLife, Madrid, pp 192–193

    Google Scholar 

  53. Muriel R, Ferrer M, Casado E, Calabuig CP (2010) First successful breeding of reintroduced ospreys Pandion haliaetus in mainland Spain. Ardeola 57:175–180

    Google Scholar 

  54. Newton I (1979) Population ecology of raptors. Poyser Monographs, London

    Google Scholar 

  55. Österlöf S (1977) Migration, wintering areas and site tenacity of the European osprey, Pandion haliaetus haliaetus (L.). Ornis Scand 8:60–78

    Article  Google Scholar 

  56. Palma L, Safara J, Dias A et al (2019) The Portugese osprey reintroduction project: achievements, lessons and perspectives. Raptors Conservation 38:23–42

    Article  Google Scholar 

  57. Pinheiro J, Bates D, DebRoy S et al (2017) nlme: linear and nonlinear mixed effects models. In: R package version 3, pp 1–131 https://CRAN.R-project.org/package=nlme. Accessed 21 Sept 2018

    Google Scholar 

  58. Poole A (1982) Brood reduction in temperate and subtropical ospreys. Oecologia 53:111–119

    Article  PubMed  PubMed Central  Google Scholar 

  59. Poole AF (1989) Ospreys. A natural and unnatural history. Cambridge University Press, Cambridge

    Google Scholar 

  60. Poole AF, Kirwan GM, Christie DA, Marks JS (2017) Osprey (Pandion haliaetus). In: Del Hoyo J, Elliot A, Sargatal J, et al. (eds) Handbook of the birds of the world alive. (retrieved from http://www.hbw.com/node/52947 on 24 July 2017). Lynx Edicions, Barcelona

  61. Porter R, Beaman M (1985) A resume of raptor migration in Europe and the Middle East. ICBP Technical Publ 5:237–242

    Google Scholar 

  62. Sanz T (1997) Migración e invernada del águila pescadora en España. Quercus 139:14–15

    Google Scholar 

  63. Saurola P (2002) Satelliitit sauraavat sääksiämme. Linnut-vuosikirja 2002

  64. Sayago JM (2011) Monitoring wintering population of osprey (Pandion haliatus) in the province of Huelva (1996–2009). In: Zuberogoitia I, Martínez JE (eds) Ecology and conservation of European forest-dwelling raptors. Diputación Foral de Bizkaia, Bilbao, pp 298–301

    Google Scholar 

  65. Schmidt D (1998) Osprey Pandion haliaetus breeding numbers in the Western Palearctic. In: Chancellor RD, Meyburg B-U, Ferrero JJ (eds) Proceedings international conference. Badajoz, pp 323–327

    Google Scholar 

  66. Schmidt-Rothmund D, Dennis R, Saurola P (2014) The osprey in the Western Palearctic: breeding population size and trends in the early 21st century. J Raptor Res 48:375–386. https://doi.org/10.3356/JRR-13-OSPR-13-03.1

    Article  Google Scholar 

  67. Scholer MN, Martín B, Ferrer M, Onrubia A, Bechard MJ, Kaltenecker GS, Carlisle JD (2016) Variable shifts in the autumn migration phenology of soaring birds in southern Spain. Ardea 104:83–93. https://doi.org/10.5253/arde.v104i1.a

    Article  Google Scholar 

  68. SEO/BirdLife (2012) Análisis preliminar del banco de datos de anillamiento de aves del Ministerio de Agricultura, Alimentación y Medio Ambiente, para la realización de un atlas de migración de aves de España. SEO/BirdLife-Fundación Biodiversidad, Madrid

    Google Scholar 

  69. Thibault JC, Bretagnolle V (2001) Monitoring, research and conservation of osprey Pandion haliaetus on Corsica, Mediterranean, France. Vogelwelt 122:173–178

    Google Scholar 

  70. Triay R, Siverio M (2008) El águila pescadora en España. Población en 2008 y método de censo. SEO/BirdLife, Madrid

    Google Scholar 

  71. Visser ME, Perdeck AC, Van Balen JH, Both C (2009) Climate change leads to decreasing bird migration distances. Glob Chang Biol 15:1859–1865. https://doi.org/10.1111/j.1365-2486.2009.01865.x

    Article  Google Scholar 

  72. Wahl R, Barbraud C (2013) The demography of a newly established osprey Pandion haliaetus population in France. Ibis. https://doi.org/10.1111/ibi.12114

  73. Wood E, Kellerman J (2015) Phenological synchrony and bird migration: changing climate and seasonal resources in North America. CRC Press, Boca Raton

    Book  Google Scholar 

  74. Zwarts L, Bijlsma RG, van der Kamp J, Wymenga E (2009) Living on the edge: wetlands and birds in a changing Sahel. KNNV Publishing, Zeist, The Netherlands

    Google Scholar 

Download references

Acknowledgements

We are grateful to the volunteers and collaborators who collected the information presented in this study (Fundación Migres et al. 2017; Migres programme 1999–2016) as well as to the Board of the Migres Foundation. We are also grateful to the Spanish Ornithological Society (SEO) which made the recovery data available and to the many ringers and ringing scheme staff who have gathered and prepared the data. Special thanks to Andrew Paterson for his kind revision of the language of the manuscript. Finally, we would like to thank the editor and two anonymous referees for providing us with comments and suggestions that greatly help to improve the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Beatriz Martín.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2635 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martín, B., Torralvo, C.A., Elias, G. et al. Are Western European ospreys (Pandion haliaetus) shortening their migration distances? Evidence from trends of the wintering population in the Iberian Peninsula. Eur J Wildl Res 65, 72 (2019). https://doi.org/10.1007/s10344-019-1311-5

Download citation

Keywords

  • Citizen science
  • Long-distance migrant
  • Mediterranean Basin
  • Monitoring
  • Raptor
  • Osprey
  • Pandion haliaetus