Increasing brown hare (Lepus europaeus) densities in farmland without predator culling: results of a field experiment in Switzerland

  • Darius WeberEmail author
  • Tobias Roth
  • Lukas Kohli
Original Article


In a field experiment in Northwestern Switzerland, we managed one part of each of four experimental areas in order to improve leveret (Lepus europaeus) survival and used the remaining part as control. The experimental areas were dominated by arable farming with a high diversity of different crops. Potential leveret predators were numerous and not controlled by gamekeeping. Management elements were wildflower patches, partly with an optimized antipredator design, and wider-sown cereals (to allow hares to enter the fields from May to July). We assumed that leverets are relatively safe in these two types of fields because these are seldom processed by agricultural machinery and potential leveret predators rarely forage there. The management lasted 7 years in two experimental areas and 3 years in the other two. Hare numbers and locations were monitored by spotlight counts, starting at least 3 years before the beginning of the experiment. In three out of the four experimental areas, we found a more positive development of hare densities in the managed area compared to the control area. Furthermore, the distribution of the hares within the experimental areas could be best described by a model including the percentage of wildflower patches, the percentage of arable land, and the percentage of cereals in wider-sown rows suggesting that hares predominantly occupied the surroundings of the management elements. We conclude that—irrespective of high predator densities—brown hare populations in agricultural landscapes with previously low hare densities can be considerably increased by offering a total area of about 3% wider-sown winter cereals or wildflower patches within the agriculturally used area.


Brown hare (Lepus europaeusField experiment Agriculture Predation 



We thank all the farmers who have voluntarily participated in our experiment: Daniel Brunner, Toni Dalhäuser, Rudolf Eschbach, Eddi Fluri, Roger Gass, Gregor Gschwind, Lukas Gschwind, Roman Küng, Michael Lang, André Leimgruber, Walter Lüdi, Jörg Meier, Rolf Meier, Hannes Niklaus, Rolf Richterich, Walter Schluep, Christian Schürch-Meister, Urs Sprecher-Wenk, Markus Stöcklin, Sonja Stutz, Ruth Weber-Zbinden, and Andreas Zuber. We are also much indebted to the more than hundred volunteers who have counted hares and breeding birds in the experimental areas and whose names cannot be mentioned individually. Field mapping and GIS-work was done by Denise Karp, Salome Reutimann, and Stéphanie Schai-Braun. Nicolas Strebel provided crow density estimations from the swiss breeding bird atlas team. We received help in many forms by officers of the cantonal administration, especially from Ignaz Bloch, Reto Fischer, Philipp Franke, Jonas Lüthy, Mark Struch, Gabriel Sutter, Dominik Thiel. Our work was much inspired by discussions with Markus Jenny, Judith Zellweger-Fischer, and Klaus Hackländer. We thank Denise Karp for valuable suggestions to improve our manuscript. This manuscript was greatly improved by comments of two anonymous reviewers.

Funding information

The experiment was funded by the association “HOPP HASE” which itself was supported by the Swiss Federal Office for the Environment, the Cantons of Aargau, Basel-Landschaft and Solothurn and a large number of private institutions and individuals.

Supplementary material

10344_2019_1306_Fig4_ESM.jpg (1.5 mb)

(JPG 1516 kb)

10344_2019_1306_Fig5_ESM.jpg (1.4 mb)

(JPG 1475 kb)

10344_2019_1306_Fig6_ESM.jpg (1.4 mb)

(JPG 1445 kb)

10344_2019_1306_Fig7_ESM.jpg (1.4 mb)

(JPG 1441 kb)

10344_2019_1306_MOESM1_ESM.pdf (14.6 mb)
ESM 5 (PDF 14978 kb)


  1. Aschwanden J, Holzgang O, Jenni L (2007) Importance of ecological compensation areas for small mammals in intensively farmed areas. Wildl Biol 13:150–158CrossRefGoogle Scholar
  2. Averianov A, Niethammer J, Pegel M (2003) Lepus europaeus Pallas, 1778 – Feldhase. In: Krapp F (ed) Handbuch der Säugetiere Europas, Band 3/II: Hasentiere Lagomorpha. Aula-Verlag, Wiebelsheim, pp 35–104Google Scholar
  3. Beerli N (2013) Räumliches Verhalten potenzieller Junghasenprädatoren. Bachelor thesis, Institut NLU, University BaselGoogle Scholar
  4. Brooks SP, Gelman A (1998) General methods for monitoring convergence of iterative simulations. J Comput Graph Stat 7:434–455Google Scholar
  5. Dietrich A (2010) Auswertung von Scheinwerferzählungen mit Binomial mixture Modellen am Beispiel der Feldhasenzählungen Lepus europaeus in der Schweiz. Master thesis, Universität für Bodenkultur ViennaGoogle Scholar
  6. Fernex A, Nagel P, Weber D (2011) Sites with reduced predation risk to young hares within an agricultural landscape. Mammalia 75(4):395–397. CrossRefGoogle Scholar
  7. Frylestam B (1980) Reproduction in the European hare in southern Sweden. Holartic Ecology 3:74–80Google Scholar
  8. Gelman A, Simpson D, Betancourt M (2017) The prior can often only be understood in the context of the likelihood. Entropy 19(10):555CrossRefGoogle Scholar
  9. Hackländer K, Arnold W, Ruf T (2002a) Postnatal development and thermoregulation in the precocial European hare (Lepus europaeus). J Comp Physiol B 172:183–190CrossRefGoogle Scholar
  10. Hackländer K, Tataruch F, Ruf T (2002b) The effect of dietary fat content on lactation energetics in the European hare (Lepus europaeus). Physiol Biochem Zool 75:19–28CrossRefGoogle Scholar
  11. Hansen K (1992) Reproduction in European hare in Danish farmland. Acta Theriol 37:27–34CrossRefGoogle Scholar
  12. Hoffmann D (2003) Populationsdynamik und -entwicklung des Feldhasen in Schleswig-Holstein im Beziehungsgefüge von Klima, Prädation und Lebensraum. Dissertation, Universität TrierGoogle Scholar
  13. Hummel S, Meyer L, Hackländer K, Weber D (2017) Activity of potential predators of European hare (Lepus europaeus) leverets and ground-nesting birds in wildflower strips. Eur J Wildl Res 63(1–13).
  14. Kalchreuther H (2003) Die Sache mit der Jagd. 5., neu bearbeitete und erweiterte Auflage. Paul Parey, Hamburg und BerlinGoogle Scholar
  15. Kaluzinski J, Pielowski Z (1976) The effect of technical agricultural operations on the hare population. In: Z. Pielowski Pucek Z (ed). Ecology and management of European hare populations. Panstwowe Wydawnictwo Rolnicze i Lesne, pp 205 - 211Google Scholar
  16. Karp D (2016) Preweaning survival of brown hare leverets (Lepus europaeus). In: Kelly P, Phillips S, Smith A, Browning C (ed.). Proceedings of the 5th world lagomorph conference, Turlock, California, July 11–15, 2016 Endangered Species Recovery Program, California State University Stanislaus, p 35Google Scholar
  17. Keith LB (1981) Population dynamics of hares. In: Myers K, Maclnnes CD (eds) proceedings of the world lagomorph conference held in Guelph, Ontario august 1979. University of Guelph, Ontario, pp 395–440Google Scholar
  18. Kéry M, Royle JA (2015) Applied hierarchical modeling in ecology: analysis of distribution, abundance and species richness in R and BUGS: volume 1: prelude and static models. Academic PressGoogle Scholar
  19. Knaus P, Antoniazza S, Wechsler S, Guélat J, Kéry M, Strebel N, Sattler T (2018) Schweizer Brutvogelatlas 2013–2016. Verbreitung und Bestandsentwicklung der Vögel in der Schweiz und im Fürstentum Liechtenstein. Schweizerische Vogelwarte, SempachGoogle Scholar
  20. Marboutin E, Bray Y, Peroux R, Mauvy B, Lartiges A (2003) Population dynamics in European hare: breeding parameters and sustainable harvest rates. J Appl Ecol 40:580–591CrossRefGoogle Scholar
  21. Meichtry-Stier KS, Jenny M, Zellweger-Fischer J, Birrer S (2014) Impact of landscape improvement by agri-environment scheme options on densities of characteristic farmland bird species and brown hare (Lepus europaeus). Agric Ecosyst Environ 189:101–109CrossRefGoogle Scholar
  22. Milanov ZB (1996) Effects of mowing fodder plants on small game populations in central Bulgaria. In: Botev N (ed) Proceedings of the international union of game biologists XXII congress September 4–8 1995 Sofia. Bulgaria. Pensoft, Sofia, Moscow, St. Petersburg, pp 394–397Google Scholar
  23. Möller D (1977) Zur postnatalen Mortalität des Feldhasen in der Deutschen Demokratischen Republik. Beiträge zur Jagd- und Wildforschung 10:247–254Google Scholar
  24. Panek M, Kamieniarz R, Bresinski W (2006) The effect of experimental removal of red foxes Vulpes vulpes on spring density of brown hares Lepus europaeus in western Poland. Acta Theriol 51:187–193CrossRefGoogle Scholar
  25. Pépin D (1989) Variation in survival of brown hare (Lepus europaeus) leverets from different farmland areas in the Paris basin. J Appl Ecol 26:13–23CrossRefGoogle Scholar
  26. Perron M (2012) Bestandsentwicklung des Feldhasen in Abhängigkeit der Landschaftsfragmentierung im Kanton Aargau. Master thesis, Zürcher Hochschule für Angewandte Wissenschaften, WädenswilGoogle Scholar
  27. Pielowski Z (1975) Charakterystyka ekologiczna populacji zajaca Lepus europaeus Pallas, 1778. Roczniki Akademii Rolniczejw Poznaniu. Prace Habilitacyjne 65:5–33Google Scholar
  28. Plummer M (2003) JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. Proceedings of the third international workshop on distributed statistical computing, March 20–22. Technische Universität Wien, Vienna, p 2003Google Scholar
  29. Reynolds JC, Tapper SC (1995) Predation by foxes Vulpes vulpes on brown hares Lepus europaeus in central southern England, and its potential impact on annual population growth. Wildl Biol 1:145–158CrossRefGoogle Scholar
  30. Reynolds JC, Tapper SC (1996) Control of mammalian predators in game management and conservation. Mammal Rev 26:127–156CrossRefGoogle Scholar
  31. Reynolds JC, Stoate C, Brockless MH, Aebischer NJ, Tapper SC (2010) The consequences of predator control for brown hares (Lepus europaeus) on UK farmland. Eur J Wildl Res 56:541–549CrossRefGoogle Scholar
  32. Rühe F (1999) Effect of stand structures in arable crops on brown hare (Lepus europaeus) distribution. Gibier Faune Sauvage 16:317–337Google Scholar
  33. Schai-Braun S, Weber D, Hackländer K (2013) Spring and autumn habitat preferences of active European hares (Lepus europaeus) in an agricultural area with low hare density. Eur J Wildl Res 59:387–397CrossRefGoogle Scholar
  34. Schielzeth H (2010) Simple means to improve the interpretability of regression coefficients. Methods Ecol Evol 1:103–113CrossRefGoogle Scholar
  35. Smith RK, Vaughan Jennings N, Harris S (2005) A quantitative analysis of the abundance and demography of European hares Lepus europaeus in relation to habitat type, intensity of agriculture and climate. Mammal Rev 35:1–24CrossRefGoogle Scholar
  36. Spittler H (2014) Was sind die Gründe für den Rückgang von Hase und Fasan?. S. 13–20 In: OÖ Landesjagdverband (ed) OÖ Niederwild-Symposium: Hat das Niederwild noch Zukunft? Oberösterreichischer Landesjagdverband, St. FlorianGoogle Scholar
  37. Tapper S, Yalden D (2010) The Brown hare. The Mammal Society, SouthamptonGoogle Scholar
  38. Voigt U (2010) Zur Raumnutzung und Mortalitätsursachen bei Junghasen (Lepus europaeus). In: Godt J, Lang J, Rosenthal G (eds) Fachtagung Feldhase. Ergebnisse der “Fachtagung Feldhase – der aktuelle Stand der Feldhasenforschung” 19.-20. März 2010 in Kassel. Lutra Verlags- und Vertriebsgesellschaft, Tauer, pp 83–92Google Scholar
  39. Zellweger-Fischer J (2015) Schweizer Feldhasenmonitoring 2015. Schweizerische Vogelwarte, SempachGoogle Scholar
  40. Zellweger-Fischer J, Kéry M, Pasinelli G (2011) Population trends of brown hares in Switzerland: the role of land-use and ecological compensation areas. Biol Conserv 144:1364–1373CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Gutachter, Berater, Forscher im Umgang mit Wildtieren und NaturRodersdorfSwitzerland
  2. 2.University of Basel, Zoological InstituteBaselSwitzerland
  3. 3.Hintermann & Weber AGReinachSwitzerland
  4. 4.Hintermann & Weber AGBernSwitzerland

Personalised recommendations