The role of forest canopy cover in habitat selection: insights from the Iberian lynx

  • A. GastónEmail author
  • S. Blázquez-Cabrera
  • C Ciudad
  • M. C. Mateo-Sánchez
  • M. A. Simón
  • S. Saura
Original Article


Habitat selection models for woodland species usually consider forest attributes derived from land cover maps, such as an area covered by forests or distance to forest edge, but canopy cover is less frequently used as a predictor. We evaluated the effect of including forest canopy cover data in habitat selection models for woodland species using the endangered Iberian lynx as a case study. We considered four canopy cover classes for both conifer and broadleaved forests, together with other land cover predictors, and analyzed a large telemetry (GPS-GSM collars) dataset. The model that included forest canopy cover outperformed, both in predictive power and in conservation management insights, the model that only used forest area. The effect of forest canopy cover on lynx habitat selection was especially strong for broadleaved forests; an increased tree cover in these forests consistently translated into significantly lower selection probabilities. Open broadleaved forests were found to clearly be the most preferred habitat. By contrast, the habitat model without canopy cover data indicated that broadleaved forests were significantly less preferred than shrublands and mountain olive groves, which may mislead conservation management actions. We conclude that habitat selection models for woodland species should consider forest canopy cover as a relevant candidate predictor as it can capture important factors influencing habitat use, such as understory vegetation abundance or prey availability. Recent developments on remote sensing technologies will increase the availability of spatially continuous information on canopy cover, facilitating a more widespread use of vegetation structural variables in habitat modeling and hence improving the conservation planning value of these models.


Resource selection functions Habitat suitability Forest structure Mammal carnivores Iberian lynx Woodland conservation management 



We thank all the staff of the LIFE projects involved in lynx collaring and tracking from 2009 to 2015.

Funding information

Funding was provided by the LIFE+ Iberlince project (LIFE10NAT/ES/000570), the DIABOLO project (funded by the EU’s Horizon 2020 programme under grant agreement no. 633464), and the Woodnet project (ERA-Net BiodivERsA, with the national funder Spanish Ministry of Economy and Competitiveness, reference PCIN-2016-042).


  1. Becker NI, Encarnação JA (2012) Cost-effectiveness of habitat-suitability maps using low-detailed data for elusive bat. Eur J Wildl Res 58:945–953CrossRefGoogle Scholar
  2. Boyce MS, Vernier PR, Nielsen SE, Schmiegelow FK (2002) Evaluating resource selection functions. Ecol Model 157(2):281–300CrossRefGoogle Scholar
  3. Castro-Luna AA, Sosa VJ, Castillo-Campos G (2007) Bat diversity and abundance associated with the degree of secondary succession in a tropical forest mosaic in south-eastern Mexico. Anim Conserv 10(2):219–228CrossRefGoogle Scholar
  4. Fernández N, Delibes M, Palomares F, Mladenoff DJ (2003) Identifying breeding habitat for the Iberian lynx: inferences from a fine-scale spatial analysis. Ecol Appl 13(5):1310–1324CrossRefGoogle Scholar
  5. Fernández N, Delibes M, Palomares F (2006) Landscape evaluation in conservation: molecular sampling and habitat modeling for the Iberian lynx. Ecol Appl 16(3):1037–1049PubMedCrossRefGoogle Scholar
  6. Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24(1):38–49CrossRefGoogle Scholar
  7. Fonseca C (2008) Winter habitat selection by wild boar Sus scrofa in southeastern Poland. Eur J Wildl Res 54:361–366CrossRefGoogle Scholar
  8. Fourcade Y, Besnard AG, Secondi J (2018) Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics. Glob Ecol Biogeogr 27(2):245–256CrossRefGoogle Scholar
  9. Gastón A, Blázquez-Cabrera S, Garrote G, Mateo-Sánchez MC, Beier P, Simón MA, Saura S (2016) Response to agriculture by a woodland species depends on cover type and behavioural state: insights from resident and dispersing Iberian lynx. J Appl Ecol 53:814–824CrossRefGoogle Scholar
  10. Gastón A, Ciudad C, Mateo-Sánchez MC, Garcia-Vinas JI, López-Leiva C, Fernández-Landa A, Marchamalo M, Cuevas J, de la Fuente B, Fortin M, Saura S (2017) Species’ habitat use inferred from environmental variables at multiple scales: how much we gain from high-resolution vegetation data? Int J Appl Earth Obs Geoinf 55:1–8CrossRefGoogle Scholar
  11. Getz WM, Fortmann-Roe S, Cross PC, Lyons AJ, Ryan SJ, Wilmers CC (2007) LoCoH: nonparameteric kernel methods for constructing home ranges and utilization distributions. PLoS One 2(2):e207PubMedPubMedCentralCrossRefGoogle Scholar
  12. Gil-Sánchez J, Arenas-Rojas R, García-Tardío M, Rodríguez-Siles J (2011) Habitat assessment to select areas for reintroduction of the endangered Iberian lynx. Wildl Biol 7(2):1–19Google Scholar
  13. Hansen M, DeFries R, Townshend J, Carroll M, Dimiceli C, Sohlberg R (2003) Global percent tree cover at a spatial resolution of 500 meters: first results of the MODIS vegetation continuous fields algorithm. Earth Interact 7(10):1–15CrossRefGoogle Scholar
  14. Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JR (2013) High-resolution global maps of 21st-century forest cover change. Science 342(6160):850–853PubMedCrossRefGoogle Scholar
  15. Harrell FE (2001) Regression modeling strategies: with applications to linear models, logistic regression and survival analysis. Springer, New YorkCrossRefGoogle Scholar
  16. Jennings S, Brown N, Sheil D (1999) Assessing forest canopies and understorey illumination: canopy closure, canopy cover and other measures. Forestry 72(1):59–74CrossRefGoogle Scholar
  17. John F, Baker S, Kostkan V (2010) Habitat selection of an expanding beaver (Castor fiber) population in central and upper Morava River basin. Eur J Wildl Res 56:663–671CrossRefGoogle Scholar
  18. Koy K, McShea WJ, Leimgruber P, Haack BN, Aung M (2005) Percentage canopy cover – using Landsat imagery to delineate habitat for Myanmar’s endangered Eld’s deer (Cervus eldi). Anim Conserv 8(3):289–296CrossRefGoogle Scholar
  19. LIFE+ Iberlince (2017) Censo de las poblaciones de lince ibérico: año 2016. Boletín Gato Clavo, Especial Censo 2016. Available at: Accessed 20 Apr 2018
  20. Linnell MA, Davis RJ, Lesmeister DB, Swingle JK (2017) Conservation and relative habitat suitability for an arboreal mammal associated with old forest. Forest Ecol Manag 402:1–11CrossRefGoogle Scholar
  21. Manly B, McDonald L, Thomas D, McDonald T, Erickson W (2002) Resource selection by animals: statistical analysis and design for field studies. Nordrecht. Kluwer, The NetherlandsGoogle Scholar
  22. Martinuzzi S, Vierling LA, Gould WA, Falkowski MJ, Evans JS, Hudak AT, Vierling KT (2009) Mapping snags and understory shrubs for a LiDAR-based assessment of wildlife habitat suitability. Remote Sens Environ 113:2533–2546CrossRefGoogle Scholar
  23. Mateo Sánchez MC, Cushman SA, Saura S (2014) Scale dependence in habitat selection: the case of the endangered brown bear (Ursus arctos) in the Cantabrian Range (NW Spain). Int J Geogr Inf Sci 28(8):1531–1546CrossRefGoogle Scholar
  24. May R, Van Dijk J, Wabakken P, Swenson JE, Linnell JD, Zimmermann B, Odden J, Pedersen HC, Andersen R, Landa A (2008) Habitat differentiation within the large-carnivore community of Norway’s multiple-use landscapes. J Appl Ecol 45(5):1382–1391PubMedPubMedCentralCrossRefGoogle Scholar
  25. Molinari-Jobin A, Kéry M, Marboutin E, Marucco F, Zimmermann F, Molinari P, Frick H, Fuxjäger C, Wölfl S, Bled F, Breitenmoser-Würsten C, Kos I, Wölfl M, Černe R, Müller O, Breitenmoser U (2017) Mapping range dynamics from opportunistic data: spatiotemporal modelling of the lynx distribution in the Alps over 21 years. Anim Conserv 21(2):168–180CrossRefGoogle Scholar
  26. Müller J, Pöllath J, Moshammer R, Schröder B (2009) Predicting the occurrence of Middle Spotted Woodpecker Dendrocopos medius on a regional scale, using forest inventory data. Forest Ecol Manag 257:502–509CrossRefGoogle Scholar
  27. Norum JK, Lone K, Linnell JDC, Odden J, Loe LE, Mysterud A (2015) Landscape of risk to roe deer imposed by lynx and different human hunting tactics. Eur J Wildl Res 61:831–840CrossRefGoogle Scholar
  28. Palma L, Beja P, Rodrigues M (1999) The use of sighting data to analyse Iberian lynx habitat and distribution. J Appl Ecol 36(5):812–824CrossRefGoogle Scholar
  29. Palomares F (2001) Vegetation structure and prey abundance requirements of the Iberian lynx: implications for the design of reserves and corridors. J Appl Ecol 38(1):9–18CrossRefGoogle Scholar
  30. Palomares F, Delibes M, Ferreras P, Fedriani JM, Calzada J, Revilla E (2000) Iberian lynx in a fragmented landscape: predispersal, dispersal, and postdispersal habitats. Conserv Biol 14(3):809–818CrossRefGoogle Scholar
  31. Pearce JL, Ferrier S (2000) Evaluating the predictive performance of habitat models developed using logistic regression. Ecol Model 133(3):225–245CrossRefGoogle Scholar
  32. Pennells L, Kaptoge S, White IR, Thompson SG, Wood AM (2014) Assessing risk prediction models using individual participant data from multiple studies. Am J Epidemiol 179(5):621–632PubMedCrossRefGoogle Scholar
  33. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Version 3.4.3. Accessed 20 Dec 2017
  34. Ribatet M (2011) POT: generalized Pareto distribution and peaks over threshold. R package. Accessed 20 Dec 2017
  35. Richardson E, Stirling I, Hik DS (2005) Polar bear (Ursus maritimus) maternity denning habitat in western Hudson Bay: a bottom-up approach to resource selection functions. Can J Zool 83(6):860–870CrossRefGoogle Scholar
  36. Roberts DR, Bahn V, Ciuti S, Boyce MS, Elith J, Guillera-Arroita G, Hauenstein S, Lahoz-Monfort JJ, Schröder B, Thuiller W, Warton DI, Wintle BA, Hartig F, Dormann CF (2017) Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40(8):913–929CrossRefGoogle Scholar
  37. Roever CL, Van Aarde RJ, Leggett K (2013) Functional connectivity within conservation networks: delineating corridors for African elephants. Biol Conserv 157:128–135CrossRefGoogle Scholar
  38. San Miguel A (2007) Manual para la gestión del hábitat del lince ibérico (Lynx pardinus) y de su presa principal, el conejo de monte (Oryctolagus cuniculus). Fundación CBD-Hábitat, MadridGoogle Scholar
  39. Santos MJ, Rosalino LM, Santos-Reis M, Ustin SL (2016) Testing remotely-sensed predictors of meso-carnivore habitat use in Mediterranean ecosystems. Landsc Ecol 31(8):1763–1780CrossRefGoogle Scholar
  40. Sexton JO, Song X, Feng M, Noojipady P, Anand A, Huang C, Kim D, Collins KM, Channan S, DiMiceli C (2013) Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error. Int J Digit Earth 6(5):427–448CrossRefGoogle Scholar
  41. Simón MA (2013) Ten years conserving the Iberian lynx. Junta de Andalucía, Sevilla, SpainGoogle Scholar
  42. Simón MA, Gil-Sánchez JM, Ruiz G, Garrote G, McCain EB, Fernández L, López-Parra M, Rojas E, Arenas-Rojas R, Rey TD (2012) Reverse of the decline of the endangered Iberian lynx. Conserv Biol 26(4):731–736PubMedCrossRefGoogle Scholar
  43. Swanepoel LH, Lindsey P, Somers MJ, van Hoven W, Dalerum F (2013) Extent and fragmentation of suitable leopard habitat in South Africa. Anim Conserv 16(1):41–50CrossRefGoogle Scholar
  44. Tattoni C, Rizzolli F, Pedrini P (2012) Can LiDAR data improve bird habitat suitability models? Ecol Model 245:103–110CrossRefGoogle Scholar
  45. Wilsey CB, Lawler JJ, Cimprich DA (2012) Performance of habitat suitability models for the endangered black-capped vireo built with remotely-sensed data. Remote Sens Environ 119:35–42CrossRefGoogle Scholar
  46. Zeller KA, McGarigal K, Beier P, Cushman SA, Vickers TW, Boyce WM (2014) Sensitivity of landscape resistance estimates based on point selection functions to scale and behavioral state: pumas as a case study. Landsc Ecol 29(3):541–557CrossRefGoogle Scholar
  47. Zeller KA, McGarigal K, Cushman SA, Beier P, Vickers TW, Boyce WM (2016) Using step and path selection functions for estimating resistance to movement: pumas as a case study. Landsc Ecol 31(6):1319–1335CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Natural Systems and Resources, ECOGESFOR Research Group, MONTES (ETSI Montes, Forestal y del Medio Natural)Universidad Politécnica de Madrid (UPM)MadridSpain
  2. 2.Consejería de Medio Ambiente y Ordenación del Territorio de la Junta de AndalucíaJaénSpain
  3. 3.European CommissionJoint Research Centre (JRC)IspraItaly

Personalised recommendations