Application of KDE+ software to identify collective risk hotspots of ungulate-vehicle collisions in South Tyrol, Northern Italy

  • Filippo FavilliEmail author
  • Michal Bíl
  • Jiri Sedoník
  • Richard Andrášik
  • Peter Kasal
  • Andreas Agreiter
  • Thomas Streifeneder
Original Article
Part of the following topical collections:
  1. Road Ecology


This paper is the first dealing with animal-vehicle collisions (AVC) with red and roe deer in South Tyrol, Northern Italy. The Autonomous Province of Bolzano (South Tyrol) has been collecting AVC data since 2012 on the entire provincial road network. Each year, AVC data accounted for more than 700 cases per year, with several socioeconomic and ecological implications. The aim of this research is to identify the locations where AVC occur more frequently than expected (hotspots) and better outline subsequent implementation of mitigation measures. For an effective identification of AVC hotspots, we applied a combined methodology of temporal and spatial analysis on AVC data collected on the South Tyrol road network in the years 2012–2014. AVC data enabled the identification of the temporal patterns, which showed different behaviors of the two target species in close proximity of the road network and throughout the 12 months. The KDE+ software applied to the 2012–2014 AVC database allowed for spatial analysis and the identification of hotspots, i.e., the road sections having the highest risk for drivers. The integration of the results, coming from the abovementioned methodologies, contributes to a detailed assessment of roads that would allow the identification of the local contributing factors and a base-line of potential problematic areas that will highlight the need for further investigation to assess whether the risk-rank is accurate and allocate effectively limited resources to a feasible number of identified hotspots and reduce the current degree of AVC in the South Tyrolean road network.


Animal-vehicle collisions Bolzano Hotspots Kernel density estimation Italy South Tyrol 



Michal Bíl, Jiří Sedoník, and Richard Andrášik were supported by project of Transport R&D Centre (LO1610) and the research infrastructure acquired from CZ.1.05/2.1.00/03.0064.

The authors thank Lena Schober of the Hunting Office Administration of the Bolzano Province, Philip Sicher of the Road Office Administration of the Bolzano Province, Lothar Gerstgrasser of the South Tyrol Hunting Association for providing the data, Paulina Malys and Julia Stauder of Eurac Research for cooperating in analyzing data and preparing the maps and figures.

Supplementary material

10344_2018_1214_MOESM1_ESM.docx (22 kb)
ESM 1 (DOCX 21 kb)
10344_2018_1214_MOESM2_ESM.kml (67 kb)
ESM 2 (KML 67 kb)
10344_2018_1214_MOESM3_ESM.kml (520 kb)
ESM 3 (KML 520 kb)
10344_2018_1214_MOESM4_ESM.kml (606 kb)
ESM 4 (KML 605 kb)
10344_2018_1214_MOESM5_ESM.kml (3.6 mb)
ESM 5 (KML 3659 kb)


  1. Agreiter A (2013) Cervo, i censimenti confermano il trend. Giornale del cacciatore 2, 2013, 36–37Google Scholar
  2. Alto Adige on line. (2012). Orso investito e ucciso sulla MeBo. Auto bruciata. Accessed 16th April 2018
  3. Andrášik R, Bíl M (2015) Traffic accidents: random or pattern occurrence? Safety and reliability of complex engineered systems. Podofiliny et al. (Eds.), ISBN 978–1–138-02879-1Google Scholar
  4. ASTAT (2012). Mobilità e traffico in Alto Adige – 2011. Accessed 30 March 2017
  5. ASTAT (2013). 6. Landwirtschaftszählung / 6° Censimento generale dell’agricoltura 2010 (6th Agricultural census 2010). Bozen/BolzanoGoogle Scholar
  6. ASTAT (2017). Mobilità e traffico in Provincia di Bolzano – 2015. Accessed on line 27th November 2017
  7. Bacci M., Dinetti M., Martini P, Fiduccia A., (2005). Dossier tecnico in materia di mitigazioni degli impatti ambientali sugli ecosistemi in conseguenza di infrastrutture lineari. Dattiloscritto. APAT, RomaGoogle Scholar
  8. Bartonička, T., Andrášik, R., Duľa, M., Sedoník, J., Bíl, M., 2018. Identification of local factors causing clustering of animal-vehicle collisions on roads. Journal of Wildlife Management. DOI:
  9. Battisti C., 2004. Frammentazione ambientale, connettività, reti ecologiche. Un contributo teorico e metodologico con particolare riferimento alla fauna selvatica. Provincia di Roma, Assessorato alle Politiche ambientali, Agricoltura e Protezione civileGoogle Scholar
  10. Bhattacharya M, Primack RB, Gerwein J (2003) Roads and railroads barriers to bumblebee movement in a temperate suburban conservation area? Biological Conservation 109:37–45. CrossRefGoogle Scholar
  11. Bíl M, Andrášik R, Janoška Z (2013) Identification of hazardous road locations of traffic accidents by means of kernel density estimation and cluster significance evaluation. Accident Anal. Prev 55:265–273CrossRefGoogle Scholar
  12. Bíl M, Andrášik R, Svoboda T, Sedoník J (2016) The KDE+ software: a tool for effective identification and ranking of animal-vehicle collision hotspots along networks. Landscape Ecology 31:231–237CrossRefGoogle Scholar
  13. Bissonette JA, Adair W (2007) Restoring habitat permeability to roaded landscapes with isometrically-scaled wildlife crossings. Biological Conservation 141:482–488. CrossRefGoogle Scholar
  14. Bissonette JA, Kassar CA (2008) Locations of deer-vehicle collisions are unrelated to traffic volume or posted speed limit. Human Wildlife Conflicts 2:122–130Google Scholar
  15. Bissonette JA, Storch I (2003) Landscape theory and resource management: linking theory to management. Island Press, Washington DCGoogle Scholar
  16. Blackwell BF, DeVaut TL, Fernandez-Juricic E, Gese EM, Gilbert-Norton L, Breck SW (2016) No single solution: application of behavioural principles in mitigating human-wildlife conflict. Animal Behaviour 120:245–254CrossRefGoogle Scholar
  17. Borer F, Fry GL (2003) Safety and economic considerations. In: Trocmé M, Cahill S, De Vries JG, Farall H, Folkeson L, Fry GL, Hicks C, Peymen J (eds) COST 341 - Habitat fragmentation due to transportation infrastructure: the European review. Office for official publications of the European communities. Luxembourg, pp 175–182Google Scholar
  18. Bruinderink GWTA, Hazebroek E (1996) Ungulate traffic collisions in Europe. Conservation Biology 10:1059–1067CrossRefGoogle Scholar
  19. Cerofolini A (2006) Danni agli autoveicoli causati da fauna selvatica. Silvae 2(4):267–278Google Scholar
  20. Chen X, Wu S (2014) Examining patterns of animal-vehicle collisions in Alabama, USA. Human-wildlife Interactions 8(2):235–244Google Scholar
  21. Ciabo S, Fabrizio M (2012). Linee guida per la prevenzione di incidenti stradali causati da fauna selvatica nella Provincia di Pescara. Provincia di Pescara, 136 pp. Available on line: Accessed on line on 22nd June 2018
  22. Clevenger AP, Hardy A, Gunson K (2006) Analyses of wildlife vehicle collision data: applications for guiding decision making for wildlife crossing mitigation and motorist safety. In: Bissonette J (ed) Methods and applications: hotspot identification of wildlife-vehicle collisions for transportation planning. Utah State University, Logan, p 23Google Scholar
  23. Cocchi R (2014). Validazione di un sistema di prevenzione dell’incidentalità stradale da fauna selvatica (ungulati) in Provincia di Rimini. Un caso di studio. Regione Emilia Romagna, Provincia di Rimini and ISPRA. Available on line: Accessed on line on 22nd June 2018
  24. Conover MR, Pitt WC, Kessler KK, Dubow TJ, Sanborn WA (1995) Review of human injuries, illnesses, and economic losses caused by wildlife in the United States. Wildl. Soc. Bull. 23:407–414Google Scholar
  25. Craighead AC, Roberts EA, Craighead FL (2001) Bozeman Pass wildlife linkage and highway safety study. Craighead Environmental Research Institute (CERI), Bozeman. Montana, USA, p 24Google Scholar
  26. Danielson BJ, Hubbard MW (1998) A literature review for assessing the status of current methods of reducing deer-vehicle collisions. Report prepared for The Task Force on Animal Vehicle Collisions, The Iowa Department of Transportation, and The Iowa Department of Natural Resources. Submitted September 1998. 29 pp.Google Scholar
  27. Danks ZD, Porter WF (2010) Temporal, spatial, and landscape habitat characteristics of moose-vehicle collisions in western Maine. J Wildl Manag 74(6):1229–1241Google Scholar
  28. Diaz-Varela ER, Vazquez-Gonzalez I, Marey-Pérez MF, Álvarez-López CJ (2011) Assessing methods of mitigating wildlife–vehicle collisions by accident characterization and spatial analysis. Transportation Res Part D: Transport Environ 16:281–287. CrossRefGoogle Scholar
  29. Dinetti M (2016). Sicurezza stradale e incidenti con la fauna selvatica. Strade e Autostrade 116 Marzo/Aprile 2016Google Scholar
  30. Eisenstecken K (2013) Wie durchlässig ist Südtirol für wandernde Wildtiere? Diplomarbeit / Masterarbeit - Institut für Wildbiologie und Jagdwirtschaft (IWJ). (University of Natural Resources and Life Sciences, 2013)Google Scholar
  31. Elvik R (2008a) The predictive validity of empirical Bayes estimates of road safety. Accident Analysis Prevention 40:1964–1969CrossRefGoogle Scholar
  32. Elvik R (2008b) A survey of operational definitions of hazardous road locations in some European countries. Accident Analysis Prevention 40:1830–1835CrossRefGoogle Scholar
  33. Ewers RM, Kliskey AD, Walker S, Rutledge D, Harding JS, Didham RK (2006) Past and future trajectories of forest loss in New Zealand. Biological Conservation 133:312–325. CrossRefGoogle Scholar
  34. Forest department, Autonomous Province of Bozen/Bolzano – South Tyrol (2016). Südtirols Wald: Flächen (South Tyrols forests: areas), Retrieved June 28, 2016 from
  35. Forman RTT, Sperling D, Bissonette JA, Clevenger AP, Cutshall CD, Dale VD, Fahrig L, France R, Goldman CR, Heanue K, Jones JA, Swanson FJ, Turrentine T, Winter TC (2003) Road ecology: science and solutions. Island Press, Washington DCGoogle Scholar
  36. Gilbert SL, Sivy KJ, Pozzanghera CB, DuBour A, Overduijn K, Smith MM, Zhou J, Little JM, Prugh LR (2017) Socioeconomic benefits of large carnivore recolonization through reduced wildlife-vehicle collisions. CONSERVATION LETTERS 10:431–439. CrossRefGoogle Scholar
  37. Gomes L, Grilo C, Silva C, Mira A (2009) Identification methods and deterministic factors of owl roadkill hotspot locations in Mediterranean landscapes. Ecol Res 24(2):355–370CrossRefGoogle Scholar
  38. Gonser RA, Jensen RR, Wolf SE (2009) The spatial ecology of deer–vehicle collisions. Appl Geography 29:527–532. CrossRefGoogle Scholar
  39. Gordon IJ (2009) What is the future for wild, large herbivores in human-modified agricultural landscapes? Wildl. Biol. 15:1–9CrossRefGoogle Scholar
  40. Grilo C, Bissonette JA, Santos-Reis M (2009) Spatial-temporal patterns in mediterranean carnivore road casualties: consequences for mitigation. Biological Conservation 142:301–313. CrossRefGoogle Scholar
  41. Grilo C, Bissonette JA, Cramer PC (2010) Mitigation measures to reduce impact on biodiversity. In: Highways: Construction, management and maintenance (Eds Samantha R. Jones), pp 73–114. Nova Science Publishers, Inc. 2010Google Scholar
  42. Groot-Bruinderink GW, Hazebroek E (1996) Ungulate traffic collisions in Europe. Conserv. Biol. 10:1059–1067CrossRefGoogle Scholar
  43. Gufler V (2000) Schalenwildwechsel am übergeordneten Straßennetz in Südtirol. Eine Skizze. Vertiefungsprojekt für Landschaftsplaner über Biotopmanagement und Wildtierökologie (WS 1999/2000 und SS 2000). BOKU, Institut für Wildbiologie und Jagdwirtschaft. (University of Natural Resources and Life Sciences, 2000)Google Scholar
  44. Hafner M (2002) Nekatere značilnosti izgub srnjadi zaradi prometa. Lovec 85:13–16 (in Slovene)Google Scholar
  45. Haines AM, Tewes ME, Laack LL, Horne JS, Young JH (2006) A habitat-based population viability analysis for ocelots (Leopardus pardalis) in the United States. Biological Conservation 132:424–436. CrossRefGoogle Scholar
  46. Hell P, Plavý R, Slamečka J, Gašparík J (2005) Losses of mammals (Mammalia) and birds (Aves) on roads in the Slovak part of the Danube Basin. European J Wildlife Res 51:35–40. CrossRefGoogle Scholar
  47. Holand O (1992) Winter digestive strategy of a concentrate selector in Norway: the European roe deer. Can. J. Zool. 70:1331–1335CrossRefGoogle Scholar
  48. Hughes WE, Saremi AR, Paniati JF (1996) Vehicle-animal crashes: an increasing safety problem. Institute Trans Engineers J 66:24–28Google Scholar
  49. Huijser M, McGowen PT, Fuller J, Hardy A, Kocjolek A (2008) Wildlife-vehicle collision reduction study: report to congress (No. FHWA-HRT-08-034). McClean, VAGoogle Scholar
  50. Huijser MP, Fuller J. Wagner ME, Hardy A, Clevenger AP (2007) Animal-vehicle collision data collection. A synthesis of highway practice. NCHRP Synthesis 370. Project 20–05/Topic 37–12. Transportation Research Board of the National Academies, Washington DC, USAGoogle Scholar
  51. Joyce TL, Mahoney SP (2001) Spatial and temporal distributions of moose-vehicle collisions in Newfoundland. Wildlife Soc Bulletin 29:281–291Google Scholar
  52. Kohler Y, Plassmann G, Ullrich A, Götz A, Scheurer T, Hölscher S, Savoia S (2008) The continuum project. Mountain Res Development 28:168–172. Accessed 12th April 2017CrossRefGoogle Scholar
  53. Lagos L, Picos J, Valero E (2012) Temporal pattern of wild ungulate-related traffic accidents in northwest Spain. European J Wildlife Res 58:661–668CrossRefGoogle Scholar
  54. Langbein J, Putman R (2005) Deer vehicle collisions in Britain – a nationwide issue. Ecol. Environ. Managem. 47:2–7Google Scholar
  55. Langbein J, Putman R, Pokorny B (2011) Traffic collisions involving deer and other ungulates in Europe and available measures for mitigation. In: Ungulate management in Europe (Putman et al eds.). Cambridge University Press: 215–259 pp.Google Scholar
  56. Lavsund S, Sandegren F (1991) Moose-vehicle relations in Sweden. Alces 27:118–126Google Scholar
  57. Levine N (2004) CrimeStat III—a spatial statistics program for the analysis of crime incident locations. Ned Levine and Associates: Houston, Texas, and the National Institute of Justice, Washington, DC, USA. Available from http://
  58. LIFE Strade Project (2013) Accessed 20 Nov 2017
  59. Lord D, Mannering F (2010) The statistical analysis of crash-frequency data: a review and assessment of methodological alternatives. Transportation Res A 44(5):291–305Google Scholar
  60. Madsen AB, Strandgaard H, Prang A (2002) Factors causing traffic killings of roe deer Capreolus capreolus in Denmark. Wildlife Biology 8:55–61CrossRefGoogle Scholar
  61. Maine Interagency Work Group on Wildlife/Motor Vehicle Collisions (2001) Collisions between large wildlife species and motor vehicles in Maine. Interim Report. April 2001Google Scholar
  62. Malo JE, Suarez F, Dıez A (2004) Can we mitigate animal vehicle accidents using predictive models? J Appl Ecol 41(4):701–710CrossRefGoogle Scholar
  63. Markolt F, Szemethy L, Lehoczki R, Heltai M (2012) Spatial and temporal evaluation of wildlife-vehicle collisions along the M3 Highway in Hungary. North-Western. J Zoology 8:414–425Google Scholar
  64. Masciarelli, L (2009). Guida la natura. Fauna selvatica e sicurezza stradale. Provincia di Firenze, 2009. Available on line: Accessed on line on 22nd June 2018
  65. Mata CIH, Herranz J, Suarez F, Malo JE (2005) Complementary use by vertebrates of crossing structures along a fenced Spanish motorway. Biological Conservation 124:397–405. CrossRefGoogle Scholar
  66. Mkanda FX, Chansa W (2011) Changes in temporal and spatial pattern of road kills along the Lusaka-Mongu (M9) highway, Kafue National Park. Zambia. South African J Wildlife Res 41:68–78CrossRefGoogle Scholar
  67. Morelle K, Lehaire F, Lejeune P (2013) Spatio-temporal patterns of wildlife-vehicle collisions in a region with a high-density road network. Nature Conservation 5:53–73. CrossRefGoogle Scholar
  68. Ng JW, Nielson C, St Clair CC (2008) Landscape and traffic factors influencing deer-vehicle collisions in an urban environment. Hum Wildl Inter 2(1):34–47Google Scholar
  69. Noro M (2010) Analysis of deer ecology and landscape features as factors contributing to deer-vehicle collisions in Hokkaido, Japan. Transportation Research Board, Washington 15 pGoogle Scholar
  70. Okabe A, Satoh T, Sugihara K (2009) A kernel density estimation method for networks, its computational method and a GIS-based tool. Int J Geogr Inf Syst 23(1):7–32CrossRefGoogle Scholar
  71. Pelliccioni ER, Riga F, Toso S (2013) Linee guida per la gestione degli ungulati – Cervidi e Bovidi. ISPRA, Manuali e Linee Guida 91/2013Google Scholar
  72. Peters W, Hebblewhite M, Cavedon M, Pedrotti L, Mustoni A, Zibordi F, Groff C, Zanin M, Cagnacci F (2015) Resource selection and connectivity reveal conservation challenges for reintroduced brown bears in the Italian Alps. Biological Conservation 186:123–133CrossRefGoogle Scholar
  73. Province of Bolzano (2016). Relazione agraria e forestale 2016. Accessed 16th April 2018
  74. Province of Bolzano (2017a) Nuova legge provinciale territorio e paesaggio. Bozza 16.03.2017. Titoli I-VII. Accessed 30 March 2017
  75. Province of Bolzano (2017b) Legge su territorio e paesaggio: ecco la nuova bozza. Accessed 6th April 2017
  76. Putman RJ (1997) Deer and road traffic accidents: Options for management. J Environ Management 51:43–57CrossRefGoogle Scholar
  77. Ramp D, Caldwell J, Edwards KA, Warton D, Croft DB (2005) Modelling of wildlife fatality hotspots along the snowy mountain highway in New South Wales. Aust Biol Conserv 126(4):474–490CrossRefGoogle Scholar
  78. Ramp D, Wilson VK, Croft DB (2006) Assessing the impacts of roads in peri-urban reserves: road-based fatalities and road usage by wildlife in the Royal National Park, New South Wales. Australia. Biological Conservation 129:348–359CrossRefGoogle Scholar
  79. Rodrıguez A, Delibes M (2004) Patterns and causes of non-natural mortality in the Iberian lynx during a 40-year period of range contraction. Biological Conservation 118:151–161. CrossRefGoogle Scholar
  80. Roger E, Laffan SW, Ramp D (2007) Habitat selection by the common wombat (Vombatus ursinus) in Disturbed environments: implications for the conservation of a common species. Biological Conservation 137:437–449. CrossRefGoogle Scholar
  81. Rosell C, Fernandéz-Bou M, Camps F, Bonorat C, Navàs F, Martínez M, Sorolla A (2013). Animal-vehicle collisions: a new cooperative strategy is needed to reduce the conflict. Proceedings of the 2013 International Conference on Ecology and Transportation (ICOET 2013)Google Scholar
  82. Sáenz-de-Santa-Maria A, Tellería JL (2015) Wildlife-vehicle collisions in Spain. European J Wildlife Res 61(3):399–406CrossRefGoogle Scholar
  83. Scoccianti C, Ferri V (2000) Fauna selvatica e infrastrutture viarie. Atti I Congresso S.H.I.Torino, 2–6 ott. 1996. Boll. Mus. reg. Sci. nat. di Torino: 815–821Google Scholar
  84. Seiler A (2001) Ecological effects of roads: a review. Introductory research essay no. 9. Department of Conservation Biology, SLU, Uppsala 2001Google Scholar
  85. Seiler A, Helldin JO (2006) Mortality in wildlife due to transportation. In: The ecology of transportation: managing mobility for the environment (Davenport, J., Davenport, J.L. eds): 165–189CrossRefGoogle Scholar
  86. Sforzi A, Lovari S (2000) Some effects of hunting on wild mammalian populations. IBEX JME 5:165–171Google Scholar
  87. Snow NP, Andelt WF, Gould NP (2011) Characteristics of road kill locations of San Clemente Island foxes. Wildl Soc Bull 35(1):32–39CrossRefGoogle Scholar
  88. Sullivan JM (2011) Trends and characteristics of animal-vehicle collisions in the United States. J Safety Res 42(1):9–16CrossRefGoogle Scholar
  89. Tornambé L, Halilaj E (2015) Corridoi Ecologici. Casi studio nella Provincia di Bolzano. Ripartizione Natura, Paesaggio e sviluppo del Territorio. Ufficio Ecologia del Paesaggio, Provincia Autonoma di Bolzano 2015Google Scholar
  90. Trombulak SC, Frissell CA (2000) Review of ecological effects of roads on terrestrial and aquatic communities. Conservation Biology 14:18–30. CrossRefGoogle Scholar
  91. Wahlström LK, Liberg O (1995) Patterns of dispersal and seasonal migration in roe deer (Capreolus capreolus). J Zoology 235:455–467. CrossRefGoogle Scholar
  92. Weigel L (2005) Results of a national opinion poll conducted for the International Association of Fish and Wildlife Agencies to ascertain the American public’s perceptions and values of wildlife. As presented at the Association for Conservation Information Conference, Ogden, Utah, July, 2005Google Scholar
  93. Xie Z, Yan J (2008) Kernel density estimation of traffic accidents in a network space. Comput Environ Urban Syst 32(5):396–406CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Eurac ResearchInstitute for Regional DevelopmentBolzanoItaly
  2. 2.CDV – Transport Research CentreBrnoCzech Republic
  3. 3.Autonomous Province of Bolzano Administration, Department for Nature, Landscape and Spatial developmentBolzanoItaly
  4. 4.Autonomous Province of Bolzano Administration, Office for Hunting and Fishery ControlBolzanoItaly

Personalised recommendations