Advertisement

Evidence of long-distance dispersal of a gray wolf from the Chernobyl Exclusion Zone

  • Michael E. Byrne
  • Sarah C. Webster
  • Stacey L. Lance
  • Cara N. Love
  • Thomas G. Hinton
  • Dmitry Shamovich
  • James C. Beasley
Short Communication

Abstract

The Chernobyl Exclusion Zone (CEZ) is a ~ 4300 km2 area in Belarus and Ukraine that remains heavily contaminated with radiation from the nuclear accident of 1986. Long standing controversy persists on the fate of wildlife within the CEZ following human abandonment of the area. Human residency remains extremely sparse, and the CEZ has become a refuge for some populations of wildlife, including gray wolves (Canis lupus). Using GPS telemetry, we documented the first long-distance movements of a young (1–2 years) male wolf from the CEZ into the surrounding landscape. The wolf traveled 369 km from its home range center over a 21-day period in February 2015. In the 95 days prior to dispersal, the wolf maintained a home range of ~ 28 km2, with daily displacements rarely exceeding 5 km. With the onset of dispersal, daily displacement increased to a mean of 16.8 km. The dispersal of a young wolf is an important observation because it suggests that the CEZ may serve as a source for some wildlife populations outside of the CEZ, and raises questions about the potential spread of radiation-induced genetic mutations to populations in uncontaminated areas.

Keywords

Animal movement Canis lupus Chernobyl Contamination Dispersal GPS telemetry 

Notes

Acknowledgments

We thank P.M. Kudan, Y. Bondar, S. Kutschmel, S. Smalovski, and the staff at the PSRER for their assistance, and I. Filipkova and A. Bundtzen for their invaluable knowledge and hard work with this research.

Funding information

Funding was provided by the US Department of Energy (Award NumberDE-FC09-07SR22506 to the University of Georgia Research Foundation), the National Geographic Society, the Institut de Radioprotection et de Suˆrete Nucleaire, and the Norwegian Radiation Protection Authority.

References

  1. Andersen LW, Harms V, Caniglia R, Czarnomska SD, Fabbri E, Jędrzejewska B, Kluth G, Madsen AB, Nowak C, Pertoldi C, Randi E, Reinhardt I, Stronen AV (2015) Long-distance dispersal of a wolf, Canis lupus, in northwestern Europe. Mamm Res 60:163–168CrossRefGoogle Scholar
  2. Baker RJ, Hamilton MJ, Van Den Bussche RA, Wiggins LE, Sugg DW, Smith MH, Lomakin MD, Gaschak SP, Bundova EG, Rudenskaya GA (1996) Small mammals from the most radioactive sites near the Chornobyl nuclear power plant. J Mammal 77:155–170CrossRefGoogle Scholar
  3. Baker R, Bickham A, Bondarkov M, Gaschak S, Matson C, Rodgers B, Wickliffe J, Chesser R (2001) Consequences of polluted environments on population structure: the bank vole (Clethrionomys glareolus) at Chornobyl. Ecotoxicology 10:211–216CrossRefPubMedGoogle Scholar
  4. Beresford N, Fesenko S, Konoplev A, Skuterud L, Smith JT, Voigt G (2016) Thirty years after the Chernobyl accident: what lessons have we learnt? J Environ Rad 157:77–89CrossRefGoogle Scholar
  5. Boyd DK, Pletscher DH (1999) Characteristics of dispersal in a colonizing wolf population in the central Rocky Mountains. J Wildl Manag 63:1094–1108CrossRefGoogle Scholar
  6. Calabrese JM, Fleming CH, Gurarie E (2016) ctmm: an R package for analyzing animal relocation data as a continuous-time stochastic process. Methods Ecol Evol 7:1124–1132CrossRefGoogle Scholar
  7. Chesser R, Baker R (2006) Growing up with Chernobyl. Amer Sci 94:542–549CrossRefGoogle Scholar
  8. Ciucci P, Reggioni W, Maiorano L, Boitani L (2009) Long-distance dispersal of a rescued wolf from the northern Apennines to the Western Alps. J Wildl Manag 73:1300–1306CrossRefGoogle Scholar
  9. Deryabina TG, Kuchmel SV, Nagorskaya LL, Hinton TG, Beasley JC, Lerebours A, Smith JT (2015) Long-term census data reveal abundant wildlife populations at Chernobyl. Curr Biol 25:R824–R826CrossRefPubMedGoogle Scholar
  10. Ellegren H, Lindgren G, Primmer CR, Møller AP (1997) Fitness loss and germline mutations in barn swallows breeding in Chernobyl. Nature 389:593–596CrossRefPubMedGoogle Scholar
  11. Fleming CH, Calabrese JM, Mueller T, Olson KA, Leimgruber P, Fagan WF (2014) From fine-scale foraging to home ranges: a semi-variance approach to identifying movement modes across spatiotemporal scales. Am Nat 183:E154–E167CrossRefPubMedGoogle Scholar
  12. Fleming CH, Fagan WF, Mueller T, Olson KA, Leimgruber P, Calabrese JM (2015) Rigorous home range estimation with movement data: a new autocorrelated kernel density estimator. Ecology 96:1182–1188CrossRefPubMedGoogle Scholar
  13. Gipson PS, Ballard WB, Nowak RM, Mech LD (2000) Accuracy and precision of estimating age of gray wolves by tooth wear. J Wildl Manag 64:752–758CrossRefGoogle Scholar
  14. Gula R, Hausknecht R, Kuehn R (2009) Evidence of wolf dispersal in anthropogenic habitats of the Polish Carpathian Mountains. Biodivers Conserv 18:2173–2184CrossRefGoogle Scholar
  15. Hinton TG, Byrne ME, Webster S, Beasley JC (2015) Quantifying the spatial and temporal variation in dose from external exposure to radiation: a new tool for use on free-ranging wildlife. J Environ Radioactiv 145:58–65CrossRefGoogle Scholar
  16. Kojola I, Aspi J, Hakala A, Heikkinen S, Ilmoni C, Ronkainen S (2006) Dispersal in an expanding wolf population in Finland. J Mammal 87:281–286CrossRefGoogle Scholar
  17. Mech LD, Fritts SH, Wagner D (1995) Minnesota wolf dispersal to Wisconsin and Michigan. Am Midl Nat 133:368–370CrossRefGoogle Scholar
  18. Meeks H, Chesser R, Rodgers B, Gaschak S, Baker R (2009) Understanding the genetic consequences of environmental toxicant exposure: Chernobyl as a model system. Environ Tox Chem 28:1982–1994CrossRefGoogle Scholar
  19. Merrill S, Mech LD (2000) Details of extensive movements by Minnesota wolves (Canis lupus). Am Midl Nat 144:428–433CrossRefGoogle Scholar
  20. Møller AP, Surai P, Mousseau TA (2005) Antioxidants, radiation and mutation as revealed by sperm abnormality in barn swallows from Chernobyl. Proc Royal Soc B 272:247–252CrossRefGoogle Scholar
  21. Møller AP, Hobson KA, Mousseau TA, Peklo AM (2006) Chernobyl as a population sink for barn swallows: tracking dispersal using stable-isotope profiles. Ecol Appl 16:169–1705CrossRefGoogle Scholar
  22. Møller AP, Mousseau TA (2011) Conservation consequences of Chernobyl and other nuclear accidents. Biol Conserv 144:2787–2798CrossRefGoogle Scholar
  23. R Core Team (2015) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. http://www.R-project.org/
  24. Ryabokon NI, Goncharova RI (2006) Transgenerational accumulation of radiation damage in small mammals chronically exposed to Chernobyl fallout. Radiat Environ Biophys 45:167–177CrossRefPubMedGoogle Scholar
  25. Wabakken P, Sand H, Kojola I, Zimmermann B, Arnemo JM, Pedersen HC, Liberg O (2007) Multistage, long-range natal dispersal by a global positioning system-collared Scandinavian wolf. J Wildl Manag 71:1631–1634CrossRefGoogle Scholar
  26. Webster SC, Byrne ME, Lance SL, Love CN, Hinton TG, Shamovich D, Beasley JC (2016) Where the wild things are: influence of radiation on the distribution of four mammalian species within the Chernobyl Exclusion Zone. Front Ecol Environ 14:185–190CrossRefGoogle Scholar
  27. Wickliffe JK, Chesser RK, Rodgers BE, Baker RJ (2002) Assessing the genotoxicity of chronic environmental irradiation by using mitochondrial DNA heteroplasmy in the bank vole (Clethrionomys glareolus) at Chornobyl, Ukraine. Environ Toxicol Chem 21:1249–1254CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Savannah River Ecology LaboratoryUniversity of GeorgiaAikenUSA
  2. 2.School of Natural ResourcesUniversity of MissouriColumbiaUSA
  3. 3.Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAthensUSA
  4. 4.Odum School of EcologyUniversity of GeorgiaAthensUSA
  5. 5.Institute of Environmental RadioactivityFukushima UniversityFukushimaJapan
  6. 6.Sosnovy BorBelarus

Personalised recommendations