Skip to main content

Advertisement

Log in

Validation of the live trap ‘Krefelder Fuchsfalle’ in combination with electronic trap sensors based on AIHTS standards

  • Short Communication
  • Published:
European Journal of Wildlife Research Aims and scope Submit manuscript

Abstract

Live traps are established in pest control, fishing and hunting, but they are discussed to compromise animal welfare due to inadequate construction and control of the trap. To assure animal welfare, the Agreement on International Humane Trapping Standards (AIHTS) demands for legal regulations regarding trapping devices. According to AIHTS, the certification of each trap is based on evaluation in 20 individuals of a specific animal species (target species). To this end, more than 80% of the animals must not show specific alterations of physiology and behaviour or potential injuries.

The aim of this study was to evaluate the ‘Krefelder Fuchsfalle’, equipped with an electronic trap system, according to AIHTS standards. The raccoon (Procyon lotor) was chosen as target species, as it is an invasive species in urban regions of Central Europe, a potential vector for zoonotic pathogens, and a skilful animal, which potentially is most difficult to meet the AIHTS requirements. The behaviour of the trapped animal was evaluated, before shooting it and performing radiographical, pathological and histological examination.

In total, 20 raccoons were trapped within 10 months in a hunting district in Hesse, Germany. Mean period of stay within the trap were 6.39 h. Despite of 14 animals, which demonstrated low-grade excoriations (superficial skin layer) at the paws and rhinarium, no other injuries or alterations of physiology and behaviour were detected.

Therefore, this study demonstrates that the ‘Krefelder Fuchsfalle’ fulfilled the AIHTS standards and accomplished trapping according to animal welfare.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Anonymus (1998) Agreement on international humane trapping standards between the European Community, Canada and the Russian Federation. Off J Eur Communities L42:43–57

    Google Scholar 

  • Fischer ML, Sullivan MJP, Greiser G, Guerrero-Casado J, Heddergott M, Hohmann U, Keuling O, Lang J, Matrin I, Michler F-U, Winter A, Klein R (2016) Assessing and predicting the spread of non-native raccoons in Germany using hunting bag data and dispersal weighted models. Biol Invasions 18:57–71

    Article  Google Scholar 

  • Harrop SR (1998) The agreements on international humane trapping standards—backround, critique and the texts. J Int Wildl Law & Policy 1:387–394

    Article  Google Scholar 

  • Hartman LH, Gaston AJ, Eastman DS (1997) Raccoon predation on ancient murrelets on East Limestone Island, British Columbia. J Wildl Manag 61:377–388

    Article  Google Scholar 

  • Hohmann BU, Gerhard R, Kasper M (2000) Home range size of adult raccoons (Procyon lotor) in Germany. Int J Mamm Biol 65:124–127

    Google Scholar 

  • Kamioka M et al (2016) Mobility of the forearm in the raccoon (Procyon lotor), raccoon dog (Nyctereutes procyonoides) and red panda (Ailurus fulgens). J Vet Med Sci 79:224–229

    Article  PubMed  PubMed Central  Google Scholar 

  • Kappus KD, Bigler WJ, McLean RG, Trevino HA (1970) The raccoon an emerging rabies host. J Wildl Dis 6:507–509

    Article  CAS  PubMed  Google Scholar 

  • Michler F-U, Hohmann U, Stubbe M (2004) Aktionsräume, Tagesschlafplätze und Sozialsysteme des Waschbären (Procyon lotor Linné 1758) im urbanen Lebensraum der Großstadt Kassel (Nordhessen). Beiträge zur Jagd- und Wildtierforschung 29:257–273

    Google Scholar 

  • Onodera S, Hecks TP (1999) Evolution of the motor system: why the elephant’s trunk works like a human hand. Neuroscientist 5:217–226

    Article  Google Scholar 

  • Park SY, Glaser C, Murray WJ, Kazacos KR, Rowley HA, Fredick DR, Bass N (2000) Raccoon roundworm (Baylisascaris procyonis) encephalitis: case report and field investigation. Pediatrics 106(4):e56

  • Proulx G, Onderka DK, Kolenosky AJ, Cole PJ, Drescher RK, Badry MJ (1993) Injuries and behavior of raccoons (Procyon lotor) captured in the soft catch and the egg traps in simulated natural environments. J Wildl Dis 29(3):447–452

    Article  CAS  PubMed  Google Scholar 

  • Rosatte RC (1998) Management of raccoons (Procyon lotor) in Ontario, Canada: do human intervention and disease have significant impact on raccoon population? Mammalia 64(4):369–390

    Google Scholar 

  • Rudolph R (1984) Gutachten und Technik in der Veterinärpathologie. Enke Verlag, Stuttgart

    Google Scholar 

  • Santos N, Rio-Maior H, Nakamura M, Roque S, Brandão R, Álvares F (2017) Characterization and minimization of the stress response to trapping in free-ranging wolves (Canis lupus): insights from physiology and behavior. Stress. https://doi.org/10.1080/10253890.2017.1368487

  • Schmidt K (2002) Nest predation and population declines in Illinois songbirds: a case for mesopredator effects. Conserv Biol 17:1141–1150

    Article  Google Scholar 

  • Schütz KE, Agren E, Amundin M, Röken B, Palme R, Mörner T (2006) Behavioral and physiological responses of trap-induced stress in European badgers. J Wildl Manag 70:884–891

    Article  Google Scholar 

  • Sorvillo F, Ash LR, Berlin OGW, Yatabe J, Degiorgio C, Morse SA (2004) Baylisascaris procyonis: an emerging helminthic zoonosis. Emerg Infect Dis 8:355–359

    Article  Google Scholar 

  • White PJ, Kreeger TJ, Seal US, Tester JR (1991) Pathological responses of red foxes to capture in box traps. J Wild. Manag 55(1):75–80

  • Zoellick BW, Ulmschneider HM, Cade BS, Stanley AW (2004) Isolation of Snake River Islands and mammalian predation of waterfowl nests. J Wildl Manag 68:650–662

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luisa Ziegler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luisa Ziegler, Fischer, D., Nesseler, A. et al. Validation of the live trap ‘Krefelder Fuchsfalle’ in combination with electronic trap sensors based on AIHTS standards. Eur J Wildl Res 64, 17 (2018). https://doi.org/10.1007/s10344-018-1176-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10344-018-1176-z

Keywords

Navigation