Investigation into diseases in free-ranging ring-necked pheasants (Phasianus colchicus) in northwestern Germany during population decline with special reference to infectious pathogens

  • N. Curland
  • F. Gethöffer
  • A. van Neer
  • L. Ziegler
  • U. Heffels-Redmann
  • M. Lierz
  • W. Baumgärtner
  • P. Wohlsein
  • I. Völker
  • S. Lapp
  • A. Bello
  • V. M. Pfankuche
  • S. Braune
  • M. Runge
  • A. Moss
  • S. Rautenschlein
  • A. Jung
  • L. Teske
  • C. Strube
  • J. Schulz
  • R. Bodewes
  • A. D. M. E. Osterhaus
  • U. Siebert
Original Article

Abstract

The population of ring-necked pheasants (Phasianus colchicus) is decreasing all over Germany since the years 2008/2009. Besides impacts of habitat changes caused by current rates of land conversion, climatic influences or predators, a contribution of infectious pathogens needs also to be considered. Infectious and non-infectious diseases in free-living populations of ring-necked pheasants have been scarcely investigated so far. In the present study, carcasses of 258 deceased free-ranging pheasants of different age groups, predominantly adult pheasants, collected over a period of 4 years in the states of Lower Saxony, North Rhine–Westphalia and Schleswig-Holstein, were examined pathomorphologically, parasitologically, virologically and bacteriologically, with a focus set on infectious pathogens. A periocular and perinasal dermatitis of unknown origin was present in 62.3% of the pheasants. Additional alterations included protozoal cysts in the skeletal musculature (19.0%), hepatitis (21.7%), enteritis (18.7%), gastritis (12.6%), and pneumonia (11.7%). In single cases, neoplasms (2.6%) and mycobacteriosis (1.7%) occurred. Further findings included identification of coronaviral DNA from trachea or caecal tonsils (16.8%), siadenoviral DNA (7.6%), avian metapneumoviral RNA (6.6%), and infectious bursal disease viral RNA (3.7%). Polymerase chain reaction (PCR) on herpesvirus, avian influenza virus (AIV), paramyxovirus type 1 (PMV-1), avian encephalomyelitis virus (AEV), and chlamydia were negative. Based on the present results, there is no indication of a specific pathogen as a sole cause for population decline in adult pheasants. However, an infectious disease can still not be completely excluded as it may only affect reproduction effectivity or a certain age group of pheasants (e.g., chicks) which were not presented in the study.

Keywords

Ring-necked pheasant Phasianus colchicus Population decline Infectious disease Germany 

Notes

Acknowledgements

We thank the hunter’s federation of Lower Saxony, North Rhine–Westphalia and Schleswig-Holstein for their support of the study. Furthermore, special thanks to the laboratory personnel for the excellent technical assistance in the laboratory investigations. We would also like to thank the Lower Saxony Ministry of Food, Agriculture and Consumer Protection, the State Agency for Nature, Environment and Consumer Protection of North Rhine-Westphalia and the Ministry of Energy, Agriculture, the Environment and Rural Areas of Schleswig Holstein for their support of the study. This study was supported in part by the European Union’s Horizon 2020 research and innovation program under grant agreement no. 643476 (COMPARE).

References

  1. (NAL) D-NLulP (2007) DIN EN ISO 6579:2007–10: Mikrobiologie von Lebensmitteln und Futtermitteln - Horizontales Verfahren zum Nachweis von Salmonella spp. (ISO 6579:2002+Amd 1:2007); Deutsche Fassung EN ISO 6579:2002+A1:2007. Beuth Verlag,Google Scholar
  2. Aldous EW, Alexander DJ (2008) Newcastle disease in pheasants (Phasianus colchicus): a review. Vet J 175(2):181–185.  https://doi.org/10.1016/j.tvjl.2006.12.012 CrossRefPubMedGoogle Scholar
  3. Backhus R (2000) Hygienic status of freshly-killed pheasants from various game reserves in Germany. / Hygienestatus frisch erlegter Fasanen (Phasianus colchicus, Ph. torquatus, Ph. mongolicus, Ph. versicolor) aus verschiedenen Revieren in Deutschland. Tierärztliche Hochschule HannoverGoogle Scholar
  4. Barrows PL, Hayes FA (1977) Studies on endoparasites of mourning dove (Zenaida-macroura) in southeast United-States. J Wildl Dis 13(1):24–28.  https://doi.org/10.7589/0090-3558-13.1.24 CrossRefPubMedGoogle Scholar
  5. Bencina D, Mrzel I, OZ RJ, Bidovec A, Dovc A (2003) Characterisation of Mycoplasma gallisepticum strains involved in respiratory disease in pheasants and peafowl. Vet Rec 152:230–234CrossRefPubMedGoogle Scholar
  6. Berg TPvd, Oña A, Morales D, Rodriguez JF (2001) Experimental inoculation of game/ornamental birds with a very virulent strain of IBDV. Paper presented at the II. International Symposium on Infectious Bursal Disease and Chicken Infectious Anaemia, Rauischholzhausen, Germany, 16–20 June 2001, Giessen; GermanyGoogle Scholar
  7. Bertran K et al (2009) Pathogenesis of high and low pathogenic avian influenza viruses in partridges. J Comp Pathol 141:281–281CrossRefGoogle Scholar
  8. Botzler RG (1991) Epizootiology of avian cholera in wildfowl. J Wildl Dis 27(3):367–395.  https://doi.org/10.7589/0090-3558-27.3.367 CrossRefPubMedGoogle Scholar
  9. Box ED, Meier JL, Smith JH (1984) Description of Sarcocystis falcatula stiles, 1893, a parasite of birds and opossums Texas. J Protozool 31:521–524CrossRefPubMedGoogle Scholar
  10. Bradbury JM, Yavari CA, Dare CM (2001) Mycoplasmas and respiratory disease in pheasants and partridges. Avian Pathol 30(4):391–396.  https://doi.org/10.1080/03079450120066395 CrossRefPubMedGoogle Scholar
  11. Catelli E, de Marco MA, Delogu M, Terregino C, Guberti V (2001) Serological evidence of avian pneumovirus infection in reared and free-living pheasants. Vet Rec 149(2):56–58.  https://doi.org/10.1136/vr.149.2.56 CrossRefPubMedGoogle Scholar
  12. Cavanagh D (2005) Coronaviruses in poultry and other birds. Avian Pathol 34(6):439–448.  https://doi.org/10.1080/03079450500367682 CrossRefPubMedGoogle Scholar
  13. Cavanagh D, Mawditt K, Britton P, Naylor CJ (1999) Longitudinal field studies of infectious bronchitis virus and avian pneumovirus in broilers using type-specific polymerase chain reactions. Avian Pathol 28(6):593–605.  https://doi.org/10.1080/03079459994399 CrossRefGoogle Scholar
  14. Cavanagh D, Mawditt K, Welchman DD, Britton P, Gough RE (2002) Coronaviruses from pheasants (Phasianus colchicus) are genetically closely related to coronaviruses of domestic fowl (infectious bronchitis virus) and turkeys. Avian Pathol 31:81–93.  https://doi.org/10.1080/03079450120106651 CrossRefPubMedGoogle Scholar
  15. Cerná Z, Pecka Z (1984) Muscle sarcocystosis in pheasants and first records of the genus sarcocystis in Phasianus colchicus Linné, 1758 in Czechoslovakia. Folia Parasitol 31:85–88PubMedGoogle Scholar
  16. Chvala S, Bakonyi T, Bukovsky C, Meister T, Brugger K, Rubel F, Nowotny N, Weissenböck H (2007) Monitoring of Usutu virus activity and spread by using dead bird surveillance in Austria, 2003–2005. Vet Microbiol 122(3-4):237–245.  https://doi.org/10.1016/j.vetmic.2007.01.029 CrossRefPubMedGoogle Scholar
  17. Dowell JH, Warren RJ, Pence DB (1983) Helminth fauna of ring-necked pheasants from the Texas High Plains. J Wildl Dis 19(2):152–153.  https://doi.org/10.7589/0090-3558-19.2.152 CrossRefPubMedGoogle Scholar
  18. Draycott RAH, Parish DMB, Woodburn MIA, Carroll JP (2000) Spring survey of the parasite Heterakis gallinarum in wild-living pheasants in Britain. Vet Rec 147(9):245–246.  https://doi.org/10.1136/vr.147.9.245 CrossRefPubMedGoogle Scholar
  19. Draycott RAH, Woodburn MIA, Carroll JP, Sage RB (2005) Effects of spring supplementary feeding on population density and breeding success of released pheasants Phasianus colchicus in Britain. Wildl Biol 11(3):177–182.Google Scholar
  20. Dubey JP, Rosenthal BM, Felix TA (2010) Morphologic and molecular characterization of the sarcocysts of Sarcocystis rileyi (apicomplexa: Sarcocystidae) from the mallard duck (Anas platyrhynchos). J Parasitol 96(4):765–770.  https://doi.org/10.1645/ge-2413.1 CrossRefPubMedGoogle Scholar
  21. Ehricht R, Slickers P, Goellner S, Hotzel H, Sachse K (2006) Optimized DNA microarray assay allows detection and genotyping of single PCR-amplifiable target copies. Mol Cell PRO 20(1):60–63.  https://doi.org/10.1016/j.mcp.2005.09.003 CrossRefGoogle Scholar
  22. Fairbrother A, Smits J, Grasman KA (2004) Avian immunotoxicology. J Toxicol Env Heal B 7(2):105–137.  https://doi.org/10.1080/10937400490258873 CrossRefGoogle Scholar
  23. Fitzgerald SD, Fitzgerald AL, Reed WM, Burnstein T (1992) Immune function in pheasants experimentally infected with marble spleen disease virus. Avian Dis 36:410–414.  https://doi.org/10.2307/1591521 CrossRefPubMedGoogle Scholar
  24. Fitzgerald SD, Reed WM (1989) A review of marble spleen disease of ring-necked pheasants. J Wildl Dis 25(4):455–461.  https://doi.org/10.7589/0090-3558-25.4.455 CrossRefPubMedGoogle Scholar
  25. Floristean I, Floristean V, Hritcu A (2002) Capilariosis of small intestine in pheasants: etiology, clinical and lesional aspects Lucrai Stiinifice - Medicina Veterinara, Universitatea de Stiinte Agricole si Medicina Veterinara "Ion Ionescu de la Brad" Iasi 45:536-540Google Scholar
  26. Fuller CM, Brodd L, Irvine RM, Alexander DJ, Aldous EW (2010) Development of an L gene real-time reverse-transcription PCR assay for the detection of avian paramyxovirus type 1 RNA in clinical samples. Arch Virol 155(6):817–823.  https://doi.org/10.1007/s00705-010-0632-1 CrossRefPubMedGoogle Scholar
  27. Gamino V et al. (2012) Natural Bagaza virus infection in game birds in southern Spain. Vet Res 43: doi:  https://doi.org/10.1186/1297-9716-43-65.
  28. Gamino V, Höfle U (2013) Pathology and tissue tropism of natural West Nile virus infection in birds: a review. Vet Res 44(1):39.  https://doi.org/10.1186/1297-9716-44-39 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Gartrell BD, Argilla L, Finlayson S, Gedye K, Gonzalez Argandona AK, Graham I, Howe L, Hunter S, Lenting B, Makan T, McInnes K, Michael S, Morgan KJ, Scott I, Sijbranda D, van Zyl N, Ward JM (2015) Ventral dermatitis in rowi (Apteryx rowi) due to cutaneous larval migrans. Int J Parasitol: Parasites Wildlife 4(1):1–10.  https://doi.org/10.1016/j.ijppaw.2014.11.001 Google Scholar
  30. Gassal S, Schmaschke R (2006) Studies of the infestation of pheasants (Phasianus colchicus) with helminths and coccidia in view of the specific environmental conditions in pheasantries and shoots. Berl Munch Tierarztl 119:295–302Google Scholar
  31. Gethings OJ, Sage RB, Leather SR (2015) Spatio-temporal factors influencing the occurrence of Syngamus trachea within release pens in the south west of England. Vet Parasitol 207(1-2):64–71.  https://doi.org/10.1016/j.vetpar.2014.11.018 CrossRefPubMedGoogle Scholar
  32. Gethöffer F, Gräber R, Strauß E (2011) Entwicklung der Fasanenbesätze. In: Wild und Jagd - Landesjagdbericht 2010/2011. NI Ministerium für Ernährung, Landwirtschaft, Verbraucherschutz und Landesentwicklung, pp 82–85Google Scholar
  33. Glutz von Blotzheim U (1994) Galliformes und Gruiformes. In: Handbuch der Vögel Mitteleuropas, vol 5. Aula-Verlag, Wiesbaden,Google Scholar
  34. Goldová M, Paluš V, Letková V, Kočišová A, Čurlik J, Mojzišová J (2006) Parasitoses of pheasants (Phasianus colchicus) in confined system. Veterinarski Arhiv 76:83–89Google Scholar
  35. Gough RE, Cox WJ, Winkler CE, Sharp MW, Spackman D (1996) Isolation and identification of infectious bronchitis virus from pheasants. Vet Rec 138(9):208–209.  https://doi.org/10.1136/vr.138.9.208 CrossRefPubMedGoogle Scholar
  36. Gu F, Li S, Ye X, Liu R (1998) Serological investigation and artificial infection of guinea-fowls and pheasants with infectious bursal disease. Chin J Vet Sci Technol 28:22–23Google Scholar
  37. Hagen N, Lierz M, Hafez HM (2004) Das Vorkommen von Mykoplasmen bei Storchnestlingen in Brandenburg und Sachsen-Anhalt. In: 14. DVG- Tagung über Vogelkrankheiten, München, GermanyGoogle Scholar
  38. Hess M, Raue R, Hafez HM (1999) PCR for specific detection of haemorrhagic enteritis virus of turkeys, an avian adenovirus. J Virol Methods 81:199–203CrossRefPubMedGoogle Scholar
  39. Hillgarth N, Osborne F (1991) Pheasants and parasites. Game Conservancy, Fordingbridge, Hants; UKGoogle Scholar
  40. Hoodless AN, Draycott RAH, Ludiman MN, Robertson PA (1999) Effects of supplementary feeding on territoriality, breeding success and survival of pheasants. Blackwell Science Ltd.,Google Scholar
  41. Hoodless AN, Kurtenbach K, Nuttall PA, Randolph SE (2003) Effects of tick Ixodes ricinus infestation on pheasant Phasianus colchicus breeding success and survival. Wildl Biol 9:171–178Google Scholar
  42. Hospes R (1996) Parasites of free-living pheasants/Parasitosen des Jagdfasans. dissertation, Justus-Liebig-Universität, Fachbereich Veterinärmedizin, GiessenGoogle Scholar
  43. Huff GR, Huff WE, Rath NC (2013) Dexamethasone immunosuppression resulting in turkey clostridial dermatitis: a retrospective analysis of seven studies, 1998-2009. Avian Dis 57(4):730–736.  https://doi.org/10.1637/10522-030113-Reg.1 CrossRefPubMedGoogle Scholar
  44. Humberd J, Guan Y, Webster RG (2006) Comparison of the replication of influenza A viruses in Chinese ring-necked pheasants and chukar partridges. J Virol 80(5):2151–2161.  https://doi.org/10.1128/Jvi.80.5.2151-2161.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Ingrao F, Rauw F, Lambrecht B, van den Berg T (2013) Infectious bursal disease: a complex host–pathogen interaction. Dev Comp Immunol 41(3):429–438.  https://doi.org/10.1016/j.dci.2013.03.017 CrossRefPubMedGoogle Scholar
  46. Iqbal M, Reddy KB, Brookes SM, Essen SC, Brown IH, McCauley JW (2014) Virus pathotype and deep sequencing of the HA gene of a low pathogenicity H7N1 avian influenza virus causing mortality in turkeys. PLoS One 9(1):e87076.  https://doi.org/10.1371/journal.pone.0087076 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Jackwood DJ, Sommer-Wagner SE (2005) Molecular epidemiology of infectious bursal disease viruses: distribution and genetic analysis of newly emerging viruses in the United States. Avian Dis 49(2):220–226.  https://doi.org/10.1637/7289-101404R CrossRefPubMedGoogle Scholar
  48. Ji X, Wang M, Li L, Chen F, Zhang Y, Li Q, Zhou J (2017) The impact of repeated freeze-thaw cycles on the quality of biomolecules in four different tissues. Biopreserv Biobanking 15(5):475–483.  https://doi.org/10.1089/bio.2017.0064 CrossRefGoogle Scholar
  49. Jones RC (1996) Avian pneumovirus infection: questions still unanswered. Avian Pathol 25(4):639–648.  https://doi.org/10.1080/03079459608419171 CrossRefPubMedGoogle Scholar
  50. Kul O, Tunca R, Haziroglu R, Diker KS, Karahan S (2005) An outbreak of avian tuberculosis in peafowl (Pavo cristatus) and pheasants (Phasianus colchicus) in a zoological aviary in Turkey. Vet Med 50:446–450CrossRefGoogle Scholar
  51. Lister SA, Beer JV, Gough RE, Holmes RG, Jones JMW, Orton RG (1985) Outbreaks of nephritis in pheasants (Phasianus colchicus) with a possible coronavirus aetiology. Vet RecGoogle Scholar
  52. Miles R, Nicholas R (1998) Mycoplasma protocols/edited by Roger miles and Robin Nicholas. Methods in molecular biology: v. 104. Humana Press, Totowa, N.J. 1998Google Scholar
  53. Millan J, Gortazar C, Tizzani P, Buenestado E (2002) Do helminths increase the vulnerability of released pheasants to fox predation? J Helminthol 76(3):225–229.  https://doi.org/10.1079/Joh2002125 CrossRefPubMedGoogle Scholar
  54. Moravkova M, Lamka J, Kriz P, Pavlik I (2011) The presence of Mycobacterium avium subsp avium in common pheasants (Phasianus colchicus) living in captivity and in other birds, vertebrates, non-vertebrates and the environment. Vet Med 56:333–343CrossRefGoogle Scholar
  55. Myoujin Y, Yona R, Umiji S, Tanimoto T, Otsuki K, Murase T (2003) Salmonella enterica subsp. enterica serovar Agona infections in commercial pheasant flocks. Avian Pathol 32(4):355–359.  https://doi.org/10.1080/0307945031000121103 CrossRefPubMedGoogle Scholar
  56. Negash T, Gelaye E, Perersen H, Grummer B, Rautenschlein S (2012) Molecular evidence of very virulent infectious bursal disease viruses in chickens in Ethiopia. Avian Dis 56:605–610CrossRefPubMedGoogle Scholar
  57. Olias P, Gruber AD, Heydorn AO, Kohls A, Mehlhorn H, Hafez HM, Lierz M (2009) A novel Sarcocystis-associated encephalitis and myositis in racing pigeons. Avian Pathol 38(2):121–128.  https://doi.org/10.1080/03079450902737847 CrossRefPubMedGoogle Scholar
  58. Olias P, Meyer A, Klopfleisch R, Lierz M, Kaspers B, Gruber AD (2013) Modulation of the host Th1 immune response in pigeon protozoal encephalitis caused by Sarcocystis calchasi Bmc. Vet Res 44:10.  https://doi.org/10.1186/1297-9716-44-10 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Orlic D, Jovanovi V, Kapetanov M, Velhner M (2003) Appearing of morbus lienis marmorei in intensive pheasant ( Phasianus colchicus ) raising Lucrari Stiintifice Medicina Veterinara Vol. XXXVI:283–285Google Scholar
  60. Ottiger HP (2010) Development, standardization and assessment of PCR systems for purity testing of avian viral vaccines. Biologicals 38(3):381–388.  https://doi.org/10.1016/j.biologicals.2010.01.015 CrossRefPubMedGoogle Scholar
  61. Pass DA (1989) The pathology of the avian integument—a review. Avian Pathol 18:1.  https://doi.org/10.1080/03079458908418580 CrossRefPubMedGoogle Scholar
  62. PathoGenesis Corporation SWA et al. (1996) Detection and analysis of diverse herpesviral species by consensus primer PCR J Clin MicrobiolGoogle Scholar
  63. Pavlovic I, Jakic-Dimic D, Kulisic Z, Florestean I (2003) Most frequent nematode parasites of artificially raised pheasants (Phasianus colchicus L.) and measures for their control. Acta Vet-Beograd 53:393–398.  https://doi.org/10.2298/Avb0306393p CrossRefGoogle Scholar
  64. Pennycott T (2000) Causes of mortality and culling in adult pheasants. Vet RecGoogle Scholar
  65. Pennycott T (2001) Disease control in adult pheasants. In Pract 23(3):132–140.  https://doi.org/10.1136/inpract.23.3.132 CrossRefGoogle Scholar
  66. Petersen KD, Christensen JP, Permin A, Bisgaard M (2001) Virulence of Pasteurella multocida subsp. multocida isolated from outbreaks of fowl cholera in wild birds for domestic poultry and game birds. Avian Pathol 30(1):27–31.  https://doi.org/10.1080/03079450020023168 CrossRefPubMedGoogle Scholar
  67. Potts GR (1986) The partridge: pesticides, predation and conservation. Collins, LondonGoogle Scholar
  68. Prukner-Radovcic E, Culjak K, Sostaric B, Mazija H, Sabocanec R (1998) Generalised tuberculosis in pheasants at a commercial breeding farm. Zeitschrift Fur Jagdwissenschaft 44:33–39.  https://doi.org/10.1007/Bf02239882 Google Scholar
  69. Ruff MD (1999) Important parasites in poultry production systems. Vet Parasitol 84(3-4):337–347.  https://doi.org/10.1016/S0304-4017(99)00076-X CrossRefPubMedGoogle Scholar
  70. Ruff MD, McDougald LR, Hansen MF (1970) Isolation of Histomonas meleagridis from Embryonated Eggs of Heterakis gallinarum. J Eukaryot Microbiol 17:10Google Scholar
  71. Schurch AC et al (2014) Metagenomic survey for viruses in western arctic caribou, Alaska, through iterative assembly of taxonomic units. PLoS One 9(8):e105227.  https://doi.org/10.1371/journal.pone.0105227 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Siegmann O, Neumann U, Behr K-P (2005) Kompendium der Geflügelkrankheiten. vet.kolleg. Hannover Schlütersche Verl.-Anstalt 2005, 6., aktualisierte und erw. Aufl Google Scholar
  73. Spackman D, Cameron IRD (1983) Isolation of infectious bronchitis virus from pheasants. Vet Rec 113(15):354–355.  https://doi.org/10.1136/vr.113.15.354 CrossRefPubMedGoogle Scholar
  74. Swayne DE (2013) Diseases of poultry. 13. ed. edn. Ames, Iowa [u.a.] Wiley, 2013,Google Scholar
  75. Teske L, Ryll M, Rautenschlein S (2013) Epidemiological investigations on the role of clinically healthy racing pigeons as a reservoir for avian paramyxovirus-1 and avian influenza virus. Avian Pathol 42(6):557–565.  https://doi.org/10.1080/03079457.2013.852157 CrossRefPubMedGoogle Scholar
  76. Thachil AJ, Shaw DP, Nagaraja KV (2014) Effects of dexamethasone immunosuppression on turkey clostridial dermatitis. Avian Dis 58(3):433–436.  https://doi.org/10.1637/10819-031314-Reg.1 CrossRefPubMedGoogle Scholar
  77. van der Goot JA, van Boven M, Koch G, de Jong MCM (2007) Variable effect of vaccination against highly pathogenic avian influenza (H7N7) virus on disease and transmission in pheasants and teals. Vaccine 25:8318–8325.  https://doi.org/10.1016/j.vaccine.2007.09.048 CrossRefPubMedGoogle Scholar
  78. van Leeuwen M, Williams MMW, Koraka P, Simon JH, Smits SL, Osterhaus AD (2010) Human picobirnaviruses identified by molecular screening of diarrhea samples. J Clin Microbiol 48(5):1787–1794.  https://doi.org/10.1128/JCM.02452-09 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Vankuppeveld FJM et al (1992) Genus-specific and species-specific identification of mycoplasmas by 16S ribosomal-RNA amplification. Appl Environ Microb 58:2606–2615Google Scholar
  80. Villanua D, Acevedo P, Hofle U, Rodriguez O, Gortazar C (2006) Changes in parasite transmission stage excretion after pheasant release. J Helminthol 80:313–318.  https://doi.org/10.1076/Joh2006344 PubMedGoogle Scholar
  81. Welchman DB (2008) Diseases in young pheasants. In Practice 30(3):144–149.  https://doi.org/10.1136/inpract.30.3.144 CrossRefGoogle Scholar
  82. Welchman DB, Bradbury JM, Cavanagh D, Aebischer NJ (2002) Infectious agents associated with respiratory disease in pheasants. Vet Rec 150(21):658–664.  https://doi.org/10.1136/vr.150.21.658 CrossRefGoogle Scholar
  83. Welchman DB, Cox WJ, Gough RE, Wood AM, Smyth VJ, Todd D, Spackman D (2009) Avian encephalomyelitis virus in reared pheasants: a case study. Avian Pathol 38(3):251–256.  https://doi.org/10.1080/03079450902912168 CrossRefGoogle Scholar
  84. Welsch U, Mulisch M, Romeis B (2010) Romeis mikroskopische Technik. Spektrum Akademischer Verlag, DordrechtGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • N. Curland
    • 1
  • F. Gethöffer
    • 1
  • A. van Neer
    • 1
  • L. Ziegler
    • 2
  • U. Heffels-Redmann
    • 2
  • M. Lierz
    • 2
  • W. Baumgärtner
    • 3
  • P. Wohlsein
    • 3
  • I. Völker
    • 3
  • S. Lapp
    • 3
  • A. Bello
    • 3
  • V. M. Pfankuche
    • 3
  • S. Braune
    • 4
  • M. Runge
    • 4
  • A. Moss
    • 5
  • S. Rautenschlein
    • 6
  • A. Jung
    • 6
  • L. Teske
    • 6
  • C. Strube
    • 7
  • J. Schulz
    • 8
  • R. Bodewes
    • 9
  • A. D. M. E. Osterhaus
    • 10
  • U. Siebert
    • 1
  1. 1.Institute for Terrestrial and Aquatic Wildlife ResearchUniversity of Veterinary Medicine Hannover, FoundationHannoverGermany
  2. 2.Clinic for Birds, Reptiles, Amphibians and FishJustus Liebig University GiessenGiessenGermany
  3. 3.Department of PathologyUniversity of Veterinary Medicine Hannover, FoundationHannoverGermany
  4. 4.Lower Saxony State Office for Consumer Protection and Food Safety (LAVES)Food and Veterinary Institute Braunschweig/HannoverHannoverGermany
  5. 5.Lower Saxony State Office for Consumer Protection and Food Safety (LAVES)Food and Veterinary Institute OldenburgOldenburgGermany
  6. 6.Clinic for PoultryUniversity of Veterinary Medicine Hannover, FoundationHannoverGermany
  7. 7.Institute for Parasitology, Center for Infection MedicineUniversity of Veterinary Medicine HannoverHannoverGermany
  8. 8.Institute for Animal Hygiene, Animal Welfare and Farm Animal BehaviourUniversity of Veterinary Medicine Hannover, FoundationHannoverGermany
  9. 9.Department of ViroscienceRotterdamThe Netherlands
  10. 10.Research Center for Emerging Infections and ZoonosesUniversity of Veterinary Medicine Hannover, FoundationHannoverGermany

Personalised recommendations