Skip to main content

Advertisement

Log in

Framework for strategic wind farm site prioritisation based on modelled wolf reproduction habitat in Croatia

  • Original Article
  • Published:
European Journal of Wildlife Research Aims and scope Submit manuscript

Abstract

In order to meet carbon reduction targets, many nations are greatly expanding their wind power capacity. However, wind farm infrastructure potentially harms wildlife, and we must therefore find ways to balance clean energy demands with the need to protect wildlife. Wide-ranging carnivores live at low density and are particularly susceptible to disturbance from infrastructure development, so are a particular concern in this respect. We focused on Croatia, which holds an important population of wolves and is currently planning to construct many new wind farms. Specifically, we sought to identify an optimal subset of planned wind farms that would meet energy targets while minimising potential impact on wolves. A suitability model for wolf breeding habitat was carried out using Maxent, based on six environmental variables and 31 reproduction site locations collected between 1997 and 2015. Wind farms were prioritised using Marxan to find the optimal trade-off between energy capacity and overlap with critical wolf reproduction habitat. The habitat suitability model predictions were consistent with the current knowledge: probability of wolf breeding site presence increased with distance to settlements, distance to farmland and distance to roads and decreased with distance to forest. Spatial optimisation showed that it would be possible to meet current energy targets with only 31% of currently proposed wind farms, selected in a way that reduces the potential ecological cost (overall predicted wolf breeding site presence within wind farm sites) by 91%. This is a highly efficient outcome, demonstrating the value of this approach for prioritising infrastructure development based on its potential impact on wide-ranging wildlife species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmadi M, Kaboli M, Nourani E, Shabani AA, Ashrafi S (2013) A predictive spatial model for gray wolf (Canis lupus) denning sites in a human-dominated landscape in western Iran. Ecol Res 28(3):513–521

    Article  Google Scholar 

  • Àlvares F, Rio-Maior H, Roque S, Nakamura M, Cadete D, Pinto S, Petrucci-Fonseca F (2011) Assessing ecological responses of wolves to wind power plants in Portugal: methodological constraints and conservation implications. Proceedings, Conference on Wind Energy and Wildlife Impacts. K. B. Roel May, Trondheim, pp 2–5 May 2011

    Google Scholar 

  • Álvares F, Rio-Maior H, Roque S, Nakamura M and Petrucci-Fonseca F (2017) Ecological response of breeding wolves to wind farms: insights from two case studies in Portugal. Wildlife and Wind Farms: Conflicts and Solutions. Volume 1: Onshore. M. R. Perrow, Pelagic Publishing. Volume 1: Onshore: 432

  • Anonymous (2015). “Interactive map of energy sources in Croatia.” Retrieved March 2016, 2016, from http://oie-aplikacije.mingo.hr/InteraktivnaKarta/

  • Anonymous (2016). “World DataBank: world development indicators.” Retrieved March 2016, 2016, from http://data.worldbank.org/country/croatia

  • Ardron JA, Possingham HP, Klein CJ (2008) Marxan good practices handbook. Pacific Marine Analysis and Research Association, Vancouver

    Google Scholar 

  • Aydin NY, Kentel E, Duzgun S (2010) GIS-based environmental assessment of wind energy systems for spatial planning: a case study from western Turkey. Renew Sust Energ Rev 14(1):364–373

    Article  Google Scholar 

  • Baban SM, Parry T (2001) Developing and applying a GIS-assisted approach to locating wind farms in the UK. Renew Energy 24(1):59–71

    Article  Google Scholar 

  • Baldwin RA (2009) Use of maximum entropy modeling in wildlife research. Entropy 11(4):854–866

    Article  Google Scholar 

  • Ball IR, Possingham HP, Watts M (2009) “Marxan and relatives: software for spatial conservation prioritisation.” Spatial conservation prioritisation: quantitative methods and computational tools. Oxford University Press, Oxford, pp 185–195

    Google Scholar 

  • Baltas A, Dervos A (2012) Special framework for the spatial planning & the sustainable development of renewable energy sources. Renew Energy 48:358–363

    Article  Google Scholar 

  • Ban NC, Vincent AC (2009) Beyond marine reserves: exploring the approach of selecting areas where fishing is permitted, rather than prohibited. PLoS One 4(7):e6258

    Article  PubMed  PubMed Central  Google Scholar 

  • Bassi E, Willis SG, Passilongo D, Mattioli L, Apollonio M (2015) Predicting the spatial distribution of wolf (Canis lupus) breeding areas in a mountainous region of Central Italy. PLoS One 10(6):e0124698

    Article  PubMed  PubMed Central  Google Scholar 

  • Bastos R, Pinhanços A, Santos M, Fernandes RF, Vicente JR, Morinha F, & Cabral JA (2015) Evaluating the regional cumulative impact of wind farms on birds: how can spatially explicit dynamic modelling improve impact assessments and monitoring? Journal of Applied Ecology

  • Bright J, Langston R, Bullman R, Evans R, Gardner S, Pearce-Higgins J (2008) Map of bird sensitivities to wind farms in Scotland: a tool to aid planning and conservation. Biol Conserv 141(9):2342–2356

    Article  Google Scholar 

  • Capitani C, Mattioli L, Avanzinelli E, Gazzola A, Lamberti P, Mauri L, Scandura M, Viviani A, Apollonio M (2006) Selection of rendezvous sites and reuse of pup raising areas among wolves Canis lupus of north-eastern Apennines, Italy. Acta Theriol 51(4):395–404

    Article  Google Scholar 

  • Chapron G et al (2014) Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science 346(6216):1517–1519

    Article  CAS  PubMed  Google Scholar 

  • Ciucci P, Boitani L, Francisci F, Andreoli G (1997) Home range, activity and movements of a wolf pack in Central Italy. J Zool 243(4):803–819

    Article  Google Scholar 

  • Colman JE, Eftestøl S, Tsegaye D, Flydal K, Mysterud A (2013) Summer distribution of semi-domesticated reindeer relative to a new wind-power plant. Eur J Wildl Res 59(3):359–370

    Article  Google Scholar 

  • Corsi F, Duprè E, Boitani L (1999) A large-scale model of wolf distribution in Italy for conservation planning. Conserv Biol 13(1):150–159

    Article  Google Scholar 

  • De Marco P, Diniz-Filho JAF, Bini LM (2008) Spatial analysis improves species distribution modelling during range expansion. Biol Lett 4(5):577–580

    Article  PubMed  PubMed Central  Google Scholar 

  • Dormann C, McPherson MJ, Araújo BM, Bivand R, Bolliger J, Carl G, Kühn I (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30(5):609–628

    Article  Google Scholar 

  • Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B, Lafourcade B, Leitão PJ (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36(1):27–46

    Article  Google Scholar 

  • Drechsler M, Ohl C, Meyerhoff J, Eichhorn M, Monsees J (2011) Combining spatial modeling and choice experiments for the optimal spatial allocation of wind turbines. Energy Policy 39(6):3845–3854

    Article  Google Scholar 

  • Drewitt AL, Langston RH (2006) Assessing the impacts of wind farms on birds. Ibis 148(s1):29–42

    Article  Google Scholar 

  • Dudík M, Phillips SJ and Schapire RE (2005) Correcting sample selection bias in maximum entropy density estimation. Advances in neural information processing systems

  • Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schlömer S, von Stechow C (2011) Renewable energy sources and climate change mitigation: special report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Elith J (2000) Quantitative methods for modeling species habitat: comparative performance and an application to Australian plants. Quantitative methods for conservation biology. Springer, Berlin, pp 39–58

    Google Scholar 

  • Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17(1):43–57

    Article  Google Scholar 

  • Fabbri E, Caniglia R, Kusak J, Galov A, Gomerčić T, Arbanasić H, Huber D, Randi E (2014) Genetic structure of expanding wolf (Canis lupus) populations in Italy and Croatia, and the early steps of the recolonization of the Eastern Alps. Mammalian Biology-Zeitschrift für Säugetierkunde 79(2):138–148

    Article  Google Scholar 

  • Fourcade Y, Engler JO, Rödder D, Secondi J (2014) Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLoS One 9(5):e97122

    Article  PubMed  PubMed Central  Google Scholar 

  • Göke C, Lamp J (2012) Case study: systematic site selection for offshore wind power with Marxan in the pilot area Pomeranian Bight. BaltSeaPlan Reports. B. Publications, Rostock BaltSeaPlan. Report 29

    Google Scholar 

  • Gortazar C (2012) Wildlife research—science for a changing environment. Eur J Wildl Res 58(1):1–4

    Article  Google Scholar 

  • Harrington FH, Mech LD (1978) Howling at two Minnesota wolf pack summer homesites. Can J Zool 56(9):2024–2028

    Article  Google Scholar 

  • Harrington FH and Mech LD (1982) An analysis of howling response parameters useful for wolf pack censusing. The Journal of Wildlife Management: 686–693

  • Harrington FH, Asa CS, Mech L and Boitani L (2003) Wolf communication. Wolves: Behavior, ecology, and conservation: 66–103

  • Helldin JO, Jung J, Neumann W, Olsson M, Skarin A, Widemo F (2012) The impacts of wind power on terrestrial mammals. Naturvardsverket, Swedish Environmental Protection Agency, Report 6510:1–51

    Google Scholar 

  • Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29(5):773–785

    Article  Google Scholar 

  • Hosmer DW Jr, Lemeshow S (2004) Applied logistic regression. John Wiley & Sons, Hoboken

    Google Scholar 

  • Houle M, Fortin D, Dussault C, Courtois R, Ouellet J-P (2010) Cumulative effects of forestry on habitat use by gray wolf (Canis lupus) in the boreal forest. Landsc Ecol 25(3):419–433

    Article  Google Scholar 

  • Huber Đ, Kusak J, Gužvica G, Gomerčić T (2002) Causes of wolf mortality in Croatia during 1986-2001. Veterinarski arhiv 72(3):131–139

    Google Scholar 

  • Iliopoulos Y, Youlatos D, Sgardelis S (2014) Wolf pack rendezvous site selection in Greece is mainly affected by anthropogenic landscape features. Eur J Wildl Res 60(1):23–34

    Article  Google Scholar 

  • Jędrzejewski W, Jędrzejewska B, Zawadzka B, Borowik T, Nowak S, Mysłajek R (2008) Habitat suitability model for polish wolves based on long-term national census. Anim Conserv 11(5):377–390

    Article  Google Scholar 

  • Jeremić J, Desnica S, Štrbenac A, Hamidović D, Kusak J, Huber D (2014) Report on the state of the wolf population in Croatia in 2014. Zagreb, State Institute for Nature Protection

    Google Scholar 

  • Kaartinen S, Kojola I and Colpaert A (2005) Finnish wolves avoid roads and settlements. Annales Zoologici Fennici, JSTOR

  • Kaczensky P, Chapron G, Von Arx M, Huber D, Andrén H, & Linnell J (2013) Status, management and distribution of large carnivores–bear, lynx, wolf & wolverine–in Europe. Report to the EU Commission 272

  • Karlsson J, Brøseth H, Sand H, Andrén H (2007) Predicting occurrence of wolf territories in Scandinavia. J Zool 272(3):276–283

    Article  Google Scholar 

  • Kiesecker JM, Evans JS, Fargione J, Doherty K, Foresman KR, Kunz TH, Naugle D, Nibbelink NP, Niemuth ND (2011) Win-win for wind and wildlife: a vision to facilitate sustainable development. PLoS One 6(4):e17566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer-Schadt S, Niedballa J, Pilgrim JD, Schröder B, Lindenborn J, Reinfelder V, Stillfried M, Heckmann I, Scharf AK, Augeri DM (2013) The importance of correcting for sampling bias in MaxEnt species distribution models. Divers Distrib 19(11):1366–1379

    Article  Google Scholar 

  • Kunz TH, Arnett EB, Erickson WP, Hoar AR, Johnson GD, Larkin RP, Strickland MD, Thresher RW, Tuttle MD (2007) Ecological impacts of wind energy development on bats: questions, research needs, and hypotheses. Front Ecol Environ 5(6):315–324

    Article  Google Scholar 

  • Kusak J (2010a) Kretanje vukova i struktura copora. Plan upravljanja vukom u Republici Hrvatskoj. DZZP, Zagreb, pp 21–26

    Google Scholar 

  • Kusak J, Huber D (2010b) Dinamika, brojnost i trend populacije vuka od 1992. do 2008. godine. Plan upravljanja vukom u Republici Hrvatskoj. DZZP, Zagreb, pp 21–23

    Google Scholar 

  • Kusak J, Skrbinšek AM, Huber D (2005) Home ranges, movements, and activity of wolves (Canis lupus) in the Dalmatian part of Dinarids, Croatia. Eur J Wildl Res 51(4):254–262

    Article  Google Scholar 

  • Kusak J, Huber D, Gomerčić T, Schwaderer G, Gužvica G (2009a) The permeability of highway in Gorski kotar (Croatia) for large mammals. Eur J Wildl Res 55(1):7–21

    Article  Google Scholar 

  • Kusak J, Prohaska A, Huber Đ, Vukšić I (2009b) Highway constructions and maintenance of large mammals habitat continuity—a Croatian experience. In: Jedrzejewski W, Lawreszuk D (eds) Mater. Konf. międzynarodowej “Wdrażanie koncepcji korytarzy Ekol. w Polsce” Białowieża, 20–22 XI 2008. Mammal Research Institute, Bialowieza, pp 51–59

    Google Scholar 

  • Kuvlesky WP Jr, Brennan LA, Morrison ML, Boydston KK, Ballard BM, Bryant FC (2007) Wind energy development and wildlife conservation: challenges and opportunities. J Wildl Manag 71(8):2487–2498

    Article  Google Scholar 

  • LAG VSW (Länderarbeitsgemeinschaft der Vogelschutzwarten) (2014) Recommendations for distances of wind turbines to important areas for birds as well as breeding sites of selected bird species. Ber Vogelschutz 51:15–42

    Google Scholar 

  • Lovich JE, Ennen JR (2013) Assessing the state of knowledge of utility-scale wind energy development and operation on non-volant terrestrial and marine wildlife. Appl Energy 103:52–60

    Article  Google Scholar 

  • Madsen PT, Wahlberg M, Tougaard J, Lucke K and Tyack PL (2006) Wind turbine underwater noise and marine mammals: implications of current knowledge and data needs

  • Majić A, Bath AJ (2010) Changes in attitudes toward wolves in Croatia. Biol Conserv 143(1):255–260

    Article  Google Scholar 

  • Mateo-Tomás P, Olea PP (2010) Anticipating knowledge to inform species management: predicting spatially explicit habitat suitability of a colonial vulture spreading its range. PLoS One 5(8):e12374

    Article  PubMed  PubMed Central  Google Scholar 

  • Mech L (1970) The wolf: the ecology and behavior of an endangered species, 1st edn. Published for the American Museum of Natural History by the Natural History Press, Garden City

    Google Scholar 

  • Mech LD and Boitani L (2003) Wolf social ecology. Wolves: behavior, ecology and conservation: 1–34

  • Northrup JM, Wittemyer G (2013) Characterising the impacts of emerging energy development on wildlife, with an eye towards mitigation. Ecol Lett 16(1):112–125

    Article  PubMed  Google Scholar 

  • Packard JM (2003) Wolf behavior: reproductive, social and intelligent. Wolves: behavior, ecology and conservation. L. D. M. A. L. Boitani. The University of Chicago Press, Chicago, pp 35–65

    Google Scholar 

  • Person DK, Russell AL (2008) Correlates of mortality in an exploited wolf population. J Wildl Manag 72(7):1540–1549

    Google Scholar 

  • Person DK, Russell AL (2009) Reproduction and den site selection by wolves in a disturbed landscape. Northwest Science 83(3):211–224

    Article  Google Scholar 

  • Phillips S (2005) A brief tutorial on Maxent. AT&T Research

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190(3):231–259

    Article  Google Scholar 

  • Phillips SJ, Dudík M, Elith J, Graham CH, Lehmann A, Leathwick J, Ferrier S (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol Appl 19(1):181–197

    Article  PubMed  Google Scholar 

  • Possingham H, Ball I, Andelman S (2000) Mathematical methods for identifying representative reserve networks. Quantitative methods for conservation biology. Springer, Berlin, pp 291–306

    Book  Google Scholar 

  • Pressey RL, Cabeza M, Watts ME, Cowling RM, Wilson KA (2007) Conservation planning in a changing world. Trends Ecol Evol 22(11):583–592

    Article  PubMed  Google Scholar 

  • Punt MJ, Groeneveld RA, Van Ierland EC, Stel JH (2009) Spatial planning of offshore wind farms: a windfall to marine environmental protection? Ecol Econ 69(1):93–103

    Article  Google Scholar 

  • Ražen N, Brugnoli A, Castagna C, Groff C, Kaczensky P, Kljun F, Knauer F, Kos I, Krofel M and Luštrik R (2015) “Long-distance dispersal connects Dinaric-Balkan and Alpine grey wolf (Canis lupus) populations.” European Journal of Wildlife Research: 1–6

  • Rondinini C, Boitani L (2007) Systematic conservation planning and the cost of tackling conservation conflicts with large carnivores in Italy. Conserv Biol 21(6):1455–1462

    Article  PubMed  Google Scholar 

  • Sazatornil V, Rodríguez A, Klaczek M, Ahmadi M, Álvares F, Arthur S et al (2016) The role of human-related risk in breeding site selection by wolves. Biol Conserv 201:103–110

    Article  Google Scholar 

  • Sedlar DK, Hrnčević L, Dekanić I (2011) Recommendations for implementation of energy strategy of the Republic of Croatia. Energy 36(7):4191–4206

    Article  Google Scholar 

  • Sims RE, Rogner H-H, Gregory K (2003) Carbon emission and mitigation cost comparisons between fossil fuel, nuclear and renewable energy resources for electricity generation. Energy policy 31(13):1315–1326

    Article  Google Scholar 

  • Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240(4857):1285–1293

    Article  CAS  PubMed  Google Scholar 

  • Syfert MM, Smith MJ, Coomes DA (2013) The effects of sampling bias and model complexity on the predictive performance of MaxEnt species distribution models. PLoS One 8(2):e55158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tegou L-I, Polatidis H, Haralambopoulos DA (2010) Environmental management framework for wind farm siting: methodology and case study. J Environ Manag 91(11):2134–2147

    Article  Google Scholar 

  • Theuerkauf J, Rouys S, Jedrzejewski W (2003) Selection of den, rendezvous, and resting sites by wolves in the Bialowieza Forest, Poland. Can J Zool 81(1):163–167

    Article  Google Scholar 

  • Treves A, Naughton-Treves L, Harper EK, Mladenoff DJ, Rose RA, Sickley TA, Wydeven AP (2004) Predicting human-carnivore conflict: a spatial model derived from 25 years of data on wolf predation on livestock. Conserv Biol 18(1):114–125

    Article  Google Scholar 

  • Vasilakis DP, Whitfield DP, Schindler S, Poirazidis KS, Kati V (2016) Reconciling endangered species conservation with wind farm development: cinereous vultures (Aegypius monachus) in South-Eastern Europe. Biol Conserv 196:10–17

    Article  Google Scholar 

  • Voigt CC, Lehnert LS, Petersons G, Adorf F, Bach L (2015) Wildlife and renewable energy: German politics cross migratory bats. Eur J Wildl Res 61(2):213–219

    Article  Google Scholar 

  • Wisz MS, Hijmans R, Li J, Peterson AT, Graham C, Guisan A (2008) Effects of sample size on the performance of species distribution models. Divers Distrib 14(5):763–773

    Article  Google Scholar 

  • Zaniewski AE, Lehmann A, Overton JM (2002) Predicting species spatial distributions using presence-only data: a case study of native New Zealand ferns. Ecol Model 157(2):261–280

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Josip Tomaić for his help in searches for wolf reproduction sites, Slaven Reljic, for his help during data analysis, Francisco Álvares, for kindly providing useful material about the impact of wind farms on wolves, Jasna Jeremić and the State Institute for Nature Conservation (Croatia), for providing habitat data for Croatia. Many thanks for the support of field work go to Bernd Thies Foundation, UK Wolf Conservation Trust, EURONATUR, Paradise Wildlife Park, “Sjeverni Velebit” National Park, “Velebit” Nature Park and “Plitvice Lakes” National Park.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gioele Passoni.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Statement on the welfare of animals

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. This article does not contain any studies with human participants performed by any of the authors.

Appendix

Appendix

Table 3 Correlation coefficients among environmental variables calculated in ArcGIS 10.2
Table 4 Comparison between the spatial correlation coefficients and the AUC values of the main model against the 20 test models
Table 5 Results of the Incremental Spatial Autocorrelation calculated in ArcGIS 10.2
Fig. 6
figure 6

Correlogram of the incremental spatial autocorrelation (based on Table 4)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Passoni, G., Rowcliffe, J.M., Whiteman, A. et al. Framework for strategic wind farm site prioritisation based on modelled wolf reproduction habitat in Croatia. Eur J Wildl Res 63, 38 (2017). https://doi.org/10.1007/s10344-017-1092-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10344-017-1092-7

Keywords

Navigation