Influence of ungulates on the vegetation composition and diversity of mixed deciduous and coniferous mountain forest in Austria

  • Miriam Meier
  • Dieter Stöhr
  • Janette Walde
  • Erich Tasser
Original Article


The often highly elevated stocks of ungulates (red and roe deer and chamois) in the Alps shape the composition of the woody vegetation. The aim of this study was to investigate the influence of ungulates on the mixed deciduous and coniferous mountain forest in the district of Reutte, which boasts the highest density of ungulates in Tyrol (Austria), with a special focus on the effect of browsing by ungulates on plant diversity of the herb layer, different shrub layers. and the tree layer. Our results showed that within the fenced ungulate exclosures, (1) the composition of trees shifted towards fir (Abies alba) and various deciduous trees, whereas outside the fences, spruce became the dominant species; (2) the cover of dwarf shrubs and upper and lower shrub layers (1.3–5.0 and 0.5–1.3 m, respectively) increased significantly; (3) the cover of grasses decreased significantly and (4) the diversity decreased as an increase in the diversity of the tree and shrub layer was overcompensated by a significant decrease in the diversity of the undergrowth vegetation. Browsing by ungulates benefited grass species in the understory and altered the relative abundance of tree species in the lower layer which could, over time, result in compositional shifts in the canopy.


Game browsing Fenced ungulate exclosures Mixed mountain forest Plant diversity Understory vegetation Vegetation composition 

Supplementary material

10344_2017_1087_MOESM1_ESM.docx (87 kb)
ESM 1 (DOCX 87 kb)


  1. Apollonio M, Andersen R, Putman R (2010) European ungulates and their management in the twenty-first century. Cambridge University Press, CambridgeGoogle Scholar
  2. Baines D, Sage RB, Baines MM (1994) The implications of red deer grazing to ground vegetation and invertebrate community structure of Scottish native pinewoods. J of Appl Ecol 31:776–783. doi: 10.2307/2404167 CrossRefGoogle Scholar
  3. Baumann M, Brang P, Burger T, Eyholzer R, Herzog S, Imesch N, Kupferschmid A, Rüegg D, Wehrli A (2010) Wald und Wild – Grundlagen für die Praxis. Wissenschaftliche und methodische Grundlagen zum integralen Management von Reh, Gämse und Rothirsch in ihrem Lebensraum. Bundesamt für Umwelt BAFU Bern. Umwelt- Wissen 1013:1–232Google Scholar
  4. Bayer R (2006) Root development, nutrition, mycorrhization and “positive microsites” of Norway spruce (Picea abies [L.] Karst.) regeneration on protective forest sites in the Bavarian Limestone Alps. PhD Thesis, School of Life Sciences Weihenstephan, TUMGoogle Scholar
  5. Bengtsson J, Nilsson SG, Franc A, Menozzi P (2000) Biodiversity, disturbances, ecosystem function and management of European forests. For Ecol Manag 132:39–50. doi: 10.1016/S0378-1127(00)00378-9 CrossRefGoogle Scholar
  6. Collard A, Lapointe L, Ouellet JP, Crete M, Lussier A, Daigle C, Cote SD (2010) Slow responses of understory plants of maple-dominated forests to white-tailed deer experimental exclusion. For Ecol Manag 260:649–662. doi: 10.1016/j.foreco.2010.05.021 CrossRefGoogle Scholar
  7. Connell JH (1978) Diversity in tropical rain forests and coral reefs. High diversity of trees and corals is maintained only in a nonequilibrium state. Sci. New Series 199:1302–1310Google Scholar
  8. Coomes DA, Allen RB, Forsyth DM, Lee WG (2003) Factors preventing the recovery of New Zealand forests following control of invasive deer. Cons Biol 17:450–459. doi: 10.1046/j.1523-1739.2003.15099.x CrossRefGoogle Scholar
  9. Côté SD, Rooney TP, Tremblay J-P, Dussault C, Waller DM (2004) Ecological impacts of deer overabundance. Annu Rev Ecol Evol Syst 35:113–147. doi: 10.1146/annurev.ecolsys.35.021103.105725 CrossRefGoogle Scholar
  10. Dávalos A, Nuzzo V, Blossey B, Wardle D (2014) Demographic responses of rare forest plants to multiple stressors: the role of deer, invasive species and nutrients. J Ecol 102(5):1222–1233Google Scholar
  11. Dorren LKA, Berger F, Imeson AC, Maier B, Rey F (2004) Integrity, stability and management of protection forests in the European Alps. For Ecol Manag 195:165–176. doi: 10.1016/j.foreco.2004.02.057 CrossRefGoogle Scholar
  12. Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulißen D (1992) Indicator values of plants in Central Europe. Scripta Geobotanica 18. Erich Goltze Kg, GöttingenGoogle Scholar
  13. Fischer A, Oswald K, Adler W (2008) Exkursionsflora für Österreich, Liechtenstein und Südtirol. Biologiezentrum der oberösterreichischen LandesmuseenGoogle Scholar
  14. Fuller R, Gill R (2001) Ecological impacts of increasing numbers of deer in British wood-lands. Institute of Chartered Foresters Forestry 74:193–199. doi: 10.1093/forestry/74.3.193 Google Scholar
  15. Gill RMA, Beardall V (2001) The impact of deer on woodlands: the effects of browsing and seed dispersal on vegetation structure and composition. Forestry 74:209–218. doi: 10.1093/forestry/74.3.209 CrossRefGoogle Scholar
  16. Hegland SJ, Jongejans E, Rydgren K (2010) Investigating the interaction between ungulate grazing and resource effects on Vaccinium myrtillus populations with integral projection models. Oecologia 163:695–706. doi: 10.1007/s00442-010-1616-2 CrossRefPubMedGoogle Scholar
  17. Hegland SJ, Lilleeng MS, Moe SR (2013) Old-growth forest floor richness increases with red deer herbivory intensity. For Ecol Manag 310:267–274. doi: 10.1016/j.foreco.s2013.08.031 CrossRefGoogle Scholar
  18. Heinze E, Boch S, Fischer M, Hessenmöller D, Klenk B, Müller J, Prati D, Schulze ED, Seele C, Socher S, Halle S (2011) Habitat use of large ungulates in northeastern Germany in relation to forest management. For Ecol Manag 261:288–296. doi: 10.1016/j.foreco.2010.10.022 CrossRefGoogle Scholar
  19. Hennekens SM, Schaminee JHJ (2001) Turboveg, a comprehensive database management system for vegetation data. J Veg Sci 12:589–591. doi: 10.2307/3237010 CrossRefGoogle Scholar
  20. Hirono I, Grasso P (1981) Natural carcinogenic products of plant origin. CRC Cr Rev Toxicol 8:235–277. doi: 10.3109/10408448109109659 CrossRefGoogle Scholar
  21. Hofmann G, Pommer U, Jenssen M (2008) Wildökologische Lebensraumbewertung für die Bewirtschaftung des wiederkäuenden Schalenwildes im nordostdeutschen Tiefland. Ministerium für Ländliche Entwicklung, Umwelt und Verbraucherschutz (MLUV) des Landes Brandenburg, EberswaldeGoogle Scholar
  22. Holtmeier F-K (2015) Animals’ influence on the landscape and ecological importance. Natives, newcomers, homecomers. Springer, New YorkGoogle Scholar
  23. Horsley SB, Stout SL, DeCalesta DS (2003) White-tailed deer impact on the vegetation dynamics of a northern hardwood forest. Ecol Appl 13:98–118. doi: 10.1656/045.020.0301 CrossRefGoogle Scholar
  24. Hotter M, Klosterhuber R, Wallner M, Maynollo H, Simon A (2011) Standorterkundung Zwischenalpen. Office of the Tyrolean government. Abteilung Forst, InnsbruckGoogle Scholar
  25. Jansen F, Dengler J (2008) German SL- Eine universelle taxonomische Referenzliste für Vegetationsdatenbanken in Deutschland. Tuexenia 28:239–253Google Scholar
  26. Katona K, Kiss M, Bleier N, Székely J, Nyeste M, Kovács V, Terhes A, Fodor A, Olajos T, Rasztovits E, Szemethy L (2013) Ungulate browsing shapes climate change impacts on forest biodiversity in Hungary. Biodivers Conserv 22:1167–1180. doi: 10.1007/s10531-013-0490-8 CrossRefGoogle Scholar
  27. Kirby KJ (2001) The impact of deer on the ground flora of British broadleaved woodland. Forestry 74(3):219–229. doi: 10.1093/forestry/74.3.219 CrossRefGoogle Scholar
  28. Kisanuki H, Kudo T, Nakai A (2012) Removing aboveground vegetation facilitates survival but slows height growth of spruce saplings in a fenced, degraded sub-alpine forest in Central Japan. J For Res 17:110–115. doi: 10.1007/s10310-011-0252-y CrossRefGoogle Scholar
  29. Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Z 15:259–263. doi: 10.1127/0941-2948/2006/0130 CrossRefGoogle Scholar
  30. Liang K-Y, Zeger SL (1986) Longitudinal data analysis using generalized linear models. Biometrika 73:13–22CrossRefGoogle Scholar
  31. Martin J-L, Stockton SA, Allombert S, Gaston AJ (2010) Top-down and bottom-up consequences of unchecked ungulate browsing on plant and animal diversity in temperate forests: lessons from a deer introduction. Biol Invasions 12:353–371. doi: 10.1007/s10530-009-9628-8 CrossRefGoogle Scholar
  32. Mason NWH, Peltzer DA, Richardson SJ, Bellingham PJ, Allen RB (2010) Stand development moderates effects of ungulate exclusion on foliar traits in the forests of New Zealand. J Ecol 98:1422–1433. doi: 10.1111/j.1365-2745.2010.01714.x CrossRefGoogle Scholar
  33. McCullagh P, Nelder JA (1989) Generalized linear models, Second edn. Chapman and Hall, LondonCrossRefGoogle Scholar
  34. Milner JM, Van Beest FM, Schmidt KT, Brook RK, Storaas T (2014) To feed or not to feed? Evidence of the intended and unintended effects of feeding wild ungulates. J Wildl Manag 78:1322–1334. doi: 10.1002/jwmg.798 CrossRefGoogle Scholar
  35. Mosandl R (1991) Die Steuerung von Waldökosystemen mit waldbaulichen Mitteln-dargestellt am Beispiel des Bergmischwaldes. Mitteilungen aus der Staatsforstverwaltung Bayerns 46:1–246Google Scholar
  36. Mucina L, Grabherr G, Wallnöfer S (1993) Die Pflanzengesellschaften Österreichs. Teil III. Wälder und Gebüsche, Gustav Fischer Verlag, JenaGoogle Scholar
  37. Mulder CPH, Bazeley-White E, Dimitrakopoulos PG, Hector A, Scherer-Lorenzen M, Schmid B (2004) Species evenness and productivity in experimental plant communities. Oikos 107:50–63. doi: 10.1111/j.0030-1299.2004.13110.x CrossRefGoogle Scholar
  38. Munteanu M, Dehelean CA, Ionescu D, Andoni M, Butnariu M (2010) Investigation of the use of Melampyrum sp. extract samples to assess metals contamination. J Agroaliment Proc Technol 16:382–386. doi: 10.1186/2193-1801-2-676 Google Scholar
  39. Naeem S (1998) Species redundancy and ecosystem reliability. Conserv Biol 12:39–45. doi: 10.1111/j.1523-1739.1998.96379.x CrossRefGoogle Scholar
  40. Office of the Tyrolean Government (2012) Tiroler Waldbericht 2011. Gruppe Forst, InnsbruckGoogle Scholar
  41. Otto H (1994) Waldökologie. Ulmer, StuttgartGoogle Scholar
  42. Peltzer DA, Allen RB, Bellingham PJ, Richardson SJ, Wright EF, Knightbridge PI, Mason NWH (2014) Disentangling drivers of tree population size distributions. For Ecol Manag 331:165–179. doi: 10.1016/j.foreco.2014.06.037 CrossRefGoogle Scholar
  43. Perea R, Girardello M, San Miguel A (2014) Big game or big loss? High deer densities are threatening woody plant diversity and vegetation dynamics. Biodivers Conserv 23:1303–1318. doi: 10.1007/s10531-014-0666-x CrossRefGoogle Scholar
  44. Polomski J, Kuhn N (1998) Wurzelsysteme. Birmendorf, Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft. Haupt, BernGoogle Scholar
  45. Putman RJ, Edwards J, JEE M, How RC, Hill SD (1989) Vegetational and faunal change in an area of heavily grazed woodland following relief of grazing. Biol Conserv 47:13–32. doi: 10.1016/0006-3207(89)90017-7 CrossRefGoogle Scholar
  46. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna URL Google Scholar
  47. Reimoser F (2003) Steering the impacts of ungulates on temperate forests. J Nat Conserv 10:243–252. doi: 10.1078/1617-1381-00024 CrossRefGoogle Scholar
  48. Reimoser F, Reimoser S (1998) Richtiges Erkennen von Wildschäden am Wald. Zentralstelle Österreichische Landesjagdverbände, WienGoogle Scholar
  49. Rodriguez-Hidalgo P, Gortazar C, Tortosa FS, Rodriguez-Vigal C, Fierro Y, Vicente J (2010) Effects of density, climate, and supplementary forage on body mass and pregnancy rates of female red deer in Spain. Oecologia 164:389–398. doi: 10.1007/s00442-010-1663-8 CrossRefPubMedGoogle Scholar
  50. Rolstad J (1988) Autumn habitat of capercaillie in southeastern Norway. J Wildl Manag 52:747–753. doi: 10.2307/3800941 CrossRefGoogle Scholar
  51. Rooney TP, Waller DM (2003) Direct and indirect effects of white-tailed deer in forest ecosystems. For Ecol Manag 181:165–176. doi: 10.1016/S0378-1127(03)00130-0 CrossRefGoogle Scholar
  52. Rooney TP, Wiegmann SM, Rogers DA, Waller DM (2004) Biotic impoverishment and homogenization in unfragmented forest understory communities. Cons Biol 18:787–798. doi: 10.1111/j.1523-1739.2004.00515.x CrossRefGoogle Scholar
  53. Schaffers AP, Sýkora KV (2000) Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements. J Veg Sci 11:225–244. doi: 10.2307/3236802 CrossRefGoogle Scholar
  54. Schütz M, Wildi O, Achermann G, Krüsi BO, Nievergelt B (2000) Predicting the development of subalpine grassland in the Swiss National Park: how to build a succession model based on data from long-term permanent plots. Natl park-Forsch Schweiz 89:207–235Google Scholar
  55. Smith RL, Smith TM (2015) Elements of ecology, 9/E. Benjamin Cummings, Menlo Park, CAGoogle Scholar
  56. Stancioiu PT, O’Hara KL (2006) Regeneration growth in different light environments of mixed species, multiaged, mountainous forests of Romania. Eur J Forest Res 125:151–162. doi: 10.1007/s10342-005-0069-3 CrossRefGoogle Scholar
  57. Storch I (1993) Habitat selection by capercaillie in summer and autumn: is bilberry important? Oecol 95:257–265. doi: 10.1007/BF00323498 CrossRefGoogle Scholar
  58. Suter W, Suter U, Krüsi B, Schütz M (2004) Spatial variation in summer diet of red deer Cervus elaphus in the eastern Swiss Alps. Wildlife Biol 10:43–50Google Scholar
  59. Tasser E, Tappeiner U (2002) Impact of land use changes on mountain vegetation. Appl Veg Sci 5:173–184. doi: 10.1111/j.1654-109X.2002.tb00547.x CrossRefGoogle Scholar
  60. Tasser E, Tappeiner U (2005) New model to predict rooting in diverse plant community compositions. Ecol Model 185:195–211. doi: 10.1016/j.ecolmodel.2004.11.024 CrossRefGoogle Scholar
  61. Tixier H, Duncan P, Scehovic J, Yani A, Gleizes M, Lila M (1997) Food selection by European roe deer (Capreolus capreolus): effects of plant chemistry, and consequences for the nutritional value of their diets. J Zool 242:229–245. doi: 10.1111/j.1469-7998.1997.tb05799.x CrossRefGoogle Scholar
  62. Tonne F (1954) Better building by insolation and daylight studies. Karl Hofmann, StuttgartGoogle Scholar
  63. Van Auken OW (2000) Shrub invasions of north American semiarid grasslands. Annu Rev Ecol Syst 31:197–215. doi: 10.1146/annurev.ecolsys.31.1.197 CrossRefGoogle Scholar
  64. Vilhar U, Roženbergar D, Simončič P, Diaci J (2015) Variation in irradiance, soil features and regeneration patterns in experimental forest canopy gaps. Ann For Sci 72:253–266. doi: 10.1007/s13595-014-0424-y CrossRefGoogle Scholar
  65. Warmelink GWW, Goedhart PW, van Dobben HF, Berendse F (2005) Plant species as predictors of soil pH: replacing expert judgement with measurements. J Veg Sci 16:461–470. doi: 10.1111/j.1654-1103.2005.tb02386.x CrossRefGoogle Scholar
  66. Watkinson AR, Riding AE, Cowie NR (2001) A community and population perspective of the possible role of grazing in determining the ground flora of ancient woodlands. Forestry 74:231–239. doi: 10.1093/forestry/74.3.231 CrossRefGoogle Scholar
  67. White H (1984) Asymptotic theory for econometricians. Academic Press, San DiegoGoogle Scholar
  68. Wilmanns O (1998) Ökologische Pflanzensoziologie: Eine Einführung in die Vegetation Mitteleuropas. Quelle & Meyer, HeidelbergGoogle Scholar
  69. Zhang ZZ, Zhi HJ, Qin XM, Li ZY (2015) Chemical comparison of different Farfarae Flos by NMR-based metabolomic approaches. Acta Pharm Sin 50:599–604Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Miriam Meier
    • 1
  • Dieter Stöhr
    • 2
  • Janette Walde
    • 3
  • Erich Tasser
    • 4
  1. 1.Institute of EcologyUniversity of InnsbruckInnsbruckAustria
  2. 2.Tyrolean Forest ServiceProvince of TyrolInnsbruckAustria
  3. 3.Department of Statistics, Faculty of Economics and StatisticsUniversity of InnsbruckInnsbruckAustria
  4. 4.Institute for Alpine EnvironmentEuropean Academy Bozen/BolzanoBolzanoItaly

Personalised recommendations