Skip to main content
Log in

Non-invasive genetic population density estimation of mountain hares (Lepus timidus) in the Alps: systematic or opportunistic sampling?

  • Original Article
  • Published:
European Journal of Wildlife Research Aims and scope Submit manuscript

Abstract

The development and evaluation of a reliable non-invasive genetic sampling (NIGS) is a crucial step towards accurately and reliably estimating population size for the long-term monitoring of wildlife species. We used NIGS data to obtain population density estimates of a mountain hare (Lepus timidus) population in the Swiss Alps. We evaluated and compared the effectiveness of systematic and opportunistic NIGS and their combination in spring 2014. Extraction success rate of DNA from faeces, hair and urine samples, their age-dependent variation as well as the completeness of microsatellite genotyping data were used as measures of effectiveness. We applied a spatially explicit capture-recapture (SECR) approach to estimate the minimum population size. We found that the extraction success of faecal samples decreased with the time since excretion and that urine and hair samples mostly yielded insufficient DNA for the successful genotyping of individuals. Mountain hare faeces up to 5 days old are most appropriate for NIGS because the risk of unsuccessful DNA extraction or genotyping errors/failure is considerably lower in these samples. Systematic sampling revealed more genotypes than opportunistic sampling, but the latter resulted in higher numbers of recapture and thus, increased the spatial resolution of the data. Depending on the sampling design, the population density estimates ranged from 3.2 to 3.6 mountain hares per 100 ha. This study informs ecologists and wildlife managers about suitable survey techniques for the monitoring of free-ranging lagomorph populations and addresses important principles for the development of accurate survey methods for other elusive wildlife species that inhabit difficult, mountainous terrain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acevedo P, Jiménez-Valverde A, Melo-Ferreira J, Real R, Alves PC (2012) Parapatric species and the implications for climate change studies: a case study on hares in Europe. Glob Chang Biol 18:1509–1519

    Article  Google Scholar 

  • Adrian M (2015) Jagdzeiten Wild. http://www.schonzeit.de. Accessed 12 Aug 2015

  • Beja-Pereira A, Oliveira R, Alves PC, Schwartz MK, Luikart G (2009) Advancing ecological understandings through technological transformations in noninvasive genetics. Mol Ecol Res 9:1279–1301

    Article  Google Scholar 

  • Borchers DL, Efford MG (2008) Spatially explicit maximum likelihood methods for capture-recapture studies. Biometrics 64:377–385

    Article  CAS  PubMed  Google Scholar 

  • Boulanger JA, White GC, McLellan BN, Woods J, Proctor M, Himmer S (2002) A meta-analysis of Grizzly Bear DNA mark-recapture projects in British Columbia, Canada. Ursus 13:137–152

    Google Scholar 

  • Chapman JA, Flux JEC (1990) Rabbits, hares and pikas status survey and conservation action plan. IUCN, Gland

    Google Scholar 

  • Dahl F, Willebrand T (2005) Natal dispersal, adult home ranges and site fidelity of mountain hares Lepus timidus in the boreal forest of Sweden. Wildl Biol 11:309–317

    Article  Google Scholar 

  • De Barba M, Waits PL, Genovesi P, Randi E, Chirichella R, Cetto E (2010) Comparing opportunistic and systematic sampling methods for non-invasive genetic monitoring of a small translocated brown bear population. J Appl Ecol 47:172–181

    Article  Google Scholar 

  • Demay SM, Becker PA, Eidson CA, Rachlow JL, Johnson TR, Waits LP (2013) Evaluating DNA degradation rates in faecal pellets of endangered pygmy rabbit. Mol Ecol Resour 13:654–662

    Article  CAS  PubMed  Google Scholar 

  • Development Core Team R (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.r-project.org. Accessed 17 Oct 2014

    Google Scholar 

  • Ebert C, Knauer F, Storch I, Hofmann U (2010) Individual heterogeneity as a pitfall in population estimates based on non-invasive genetic sampling: a review and recommendations. Wildl Biol 16:225–240

    Article  Google Scholar 

  • Ebert C, Sandrini J, Spielberger B, Thiele B, Hohmann U (2012) Non-invasive genetic approaches for estimation of ungulate population size: a study on roe deer (Capreolus capreolus) based on faeces. Anim Biodivers Conserv 35:267–275

    Google Scholar 

  • Efford MG (2014) secr: spatially explicit capture–recapture models, R package version 2.8.1. http://cran.r-project.org. Accessed 17 Oct 2014

    Google Scholar 

  • Efford MG, Fewster RM (2013) Estimation of population density by spatially explicit capture–recapture. Oikos 122:918–928

    Article  Google Scholar 

  • Environment Agency Austria (2015) Österreichisches Artenschutz-Informationssystem (Version 2.0). Environment Agency Austria, Vienna. http://www.umweltbundesamt.at/umweltschutz/naturschutz/artenschutz/oasis. Accessed 12 Aug 2015

    Google Scholar 

  • Ewacha MVA, Roth JD, Brook RK (2014) Vegetation structure and composition determine snowshoe hare (Lepus americanus) activity at arctic tree line. Can J Zool 92:789–794

    Article  Google Scholar 

  • Flux JEC (1970) Life history of the Mountain hare (Lepus timidus scoticus) in north-east Scotland. J Zool (Lond) 161:75–123

    Article  Google Scholar 

  • Gamboni A-S (1997) Comportement spatio-temporel d’une population de lievre variable (Lepus timidus varronis) au sud des alpes. Master thesis, University of Neuchâtel

    Google Scholar 

  • Goossens B, Bruford MW (2009) Non-invasive genetic analysis in conservation. In: Bertorelle G, Bruford MW, Hauffe HC, Rizzoli A, Vernisi C (eds) Population Genetics for Animal Conservation. Cambridge University Press, Cambridge, pp 167–201

    Chapter  Google Scholar 

  • Guschanski K, Vigilant L, McNeilage A, Gray M, Kagoda E, Robbins MM (2009) Counting elusive animals: comparing field and genetic census of the entire mountain gorilla population of Bwindi Impenetrable National Park, Uganda. Biol Conserv 142:290–300

    Article  Google Scholar 

  • Gutleb B, Komposch B, Spitzenberger F (1999) Rote Liste der Säugetiere Kärntens (Vertebrata, Mammalia). In: Wieser C, Mildner P, Holzinger WE, Rottenburg T (eds) Rote Listen gefährdeter Tiere Kärntens. Amt der Kärntner Landesregierung, Klagenfurt, pp 99–104

    Google Scholar 

  • Haller H (1978) Zur Populationsökologie des Uhus Bubo bubo im Hochgebirge: Bestand, Bestandsentwicklung und Lebensraum in den Rätischen Alpen. Ornithol Beob 75:237–265

    Google Scholar 

  • Haller H (1992) Zur Ökologie des Luchses Lynx lynx im Verlauf seiner Wiederansiedlung in den Walliser Alpen. Habilitation thesis, Georg-August Universität Göttingen

    Google Scholar 

  • Haller H (1996) Der Steinadler in Graubünden. Langfristige Untersuchungen zur Populationsökologie von Aquila chrysaetos im Zentrum der Alpen. Basler Druck und Verlag, Basel

    Google Scholar 

  • Haller H, Eisenhut A, Haller R (2013) Atlas des Schweizerischen Nationalparks, Die ersten 100 Jahre. Haupt, Bern

    Google Scholar 

  • Hausknecht R, Gula R, Pirga B, Kuehn R (2007) Urine—a source for noninvasive genetic monitoring in wildlife. Mol Ecol Notes 7:208–212

    Article  CAS  Google Scholar 

  • Henry P, Henry A, Russello MA (2011) A noninvasive hair sampling technique to obtain high quality DNA from elusive small mammals. J Vis Exp 49:e2791

    Google Scholar 

  • IUCN (2014) Protected Areas Category Ia. IUCN, Gland. http://www.iucn.org/about/work/programmes/gpap_home/gpap_quality/gpap_pacategories. Accessed 17 Oct 2014

  • IUCN (2015) Red list of threatened species, Version 2015.2. IUCN, Gland. http://www.iucnredlist.org. Accessed 12 Aug 2015

  • Kalinowski ST, Taper M, Marshall TC (2007) Revising how the computer program cervus accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Article  PubMed  Google Scholar 

  • Kryger U, Robinson TJ, Bloomer P (2002) Isolation and characterization of six polymorphic microsatellite loci in South African hares (Lepus saxatilis F Cuvier, 1823 and Lepus capensis Linnaeus, 1758). Mol Ecol Notes 2:422–424

    Article  CAS  Google Scholar 

  • Lerone L, Mengoni C, Carpaneto GM, Randi E, Loy A (2014) Procedures to genotype problematic non-invasive otter (Lutra lutra) samples. Acta Theriol 59:511–520

    Article  Google Scholar 

  • Lonsinger RC, Gese EM, Dempsey SJ, Kluever BM, Johnson TR, Waits LP (2015) Balancing sample accumulation and DNA degradation rates to optimize noninvasive genetic sampling of sympatric carnivores. Mol Ecol Res 15:831–842

    Article  CAS  Google Scholar 

  • Lotz A (2006) Alpine Habitat Diversity-HABITALP—Project Report 2002–2006. Nationalpark Berchtesgaden, Berchtesgaden

    Google Scholar 

  • Luikart G, Ryman N, Tallmon DA, Schwartz MK, Allendorf FW (2010) Estimation of census and effective population sizes: the increasing usefulness of DNA-based approaches. Conserv Genet 11:355–373

    Article  CAS  Google Scholar 

  • Marucco F, Boitani L, Pletscher DH, Schwartz MK (2011) Bridging the gaps between non-invasive genetic sampling and population parameter estimation. Eur J Wildl Res 57:1–13

    Article  Google Scholar 

  • Mollet P, Kery M, Gardner B, Pasinelli G, Royle JA (2015) Estimating population size for Capercaillie (Tetrao urogallus L.) with spatial capture-recapture models based on genotypes from one field sample. PLoS One. doi:10.1371/journal.pone.0129020

    PubMed  PubMed Central  Google Scholar 

  • Mougel F, Mounolou JC, Monnerot M (1997) Nine polymorphic microsatellite loci in the rabbit, Oryctolagus cuniculus. Anim Genet 28:58

    Article  CAS  PubMed  Google Scholar 

  • Mumma MA, Zieminski C, Fuller TK, Mahoney SP, Waits LP (2015) Evaluating noninvasive genetic sampling techniques to estimate large carnivore abundance. Mol Ecol Res 15:1133–1144

    Article  Google Scholar 

  • Nodari M (2006) Ecological role of mountain hare (Lepus timidus) in the alpine ecosystem. Habitat use, population consistency and dynamics of a species of conservation and management interest. Dissertation, University Insubria

    Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez T, Naves J, Vázquez JF, Fernández-Gil A, Seijas J, Albornoz J, Revilla E, Delibes M, Domínguez A (2014) Estimating the population size of the endangered Cantabrian brown bear through genetic sampling. Wild Biol 20:300–309

    Article  Google Scholar 

  • Piggott MP (2004) Effect of sample age and season of collection on the reliability of microsatellite genotyping of faecal DNA. Wildl Res 31:485–493

    Article  CAS  Google Scholar 

  • Rehnus M (2013) Der Schneehase. Ein Überlebenskünstler mit ungewisser Zukunft. Bristol-Stiftung, Zürich

    Google Scholar 

  • Rehnus M, Marconi L, Hackländer K, Filli F (2013) Seasonal changes in habitat use and feeding strategy of the mountain hare (Lepus timidus) in the Central Alps. Hystrix 24:161–165

    Google Scholar 

  • Rehnus M, Wehrle M, Palme R (2014) Mountain hares Lepus timidus and tourism: stress events and reactions. J Appl Ecol 51:6–12

    Article  Google Scholar 

  • Rehnus M, Braunisch V, Hackländer K, Jost L, Bollmann K (2016) The seasonal trade-off between food and cover of the Alpine mountain hare (Lepus timidus). Eur J Wildl Res 62:11–21

    Article  Google Scholar 

  • Rico C, Rico I, Webb N, Smith S, Bell D, Hewitt G (1994) Four polymorphic microsatellite loci for the European wild rabbit, Oryctolagus cuniculus. Anim Genet 25:367

    Article  CAS  PubMed  Google Scholar 

  • Rösner S, Brandl R, Segelbacher G, Lorenc T, Muller J (2014) Noninvasive genetic sampling allows estimation of capercaillie numbers and population structure in the Bohemian Forest. Eur J Wildl Res 60:789–801

    Article  Google Scholar 

  • Schwartz MK, Luikart G, Waples RS (2007a) Genetic monitoring as a promising tool for conservation and management. Trends Ecol Evol 22:25–33

    Article  PubMed  Google Scholar 

  • Schwartz MK, Pilgrim KL, McKelvey KS, Rivera PT, Ruggiero LF (2007b) DNA markers for identifying individual snowshoe hares using field-collected pellets. Northwest Sci 81:316–322

    Article  CAS  Google Scholar 

  • Sloane MA, Sunnucks P, Alpers D, Beheregaray LB, Taylor AC (2000) Highly reliable genetic identification of individual northern hairy-nosed wombats from single remotely collected hairs: a feasible censusing method. Mol Ecol 9:1233–1240

    Article  CAS  PubMed  Google Scholar 

  • Slotta-Bachmayr L (1998) Biologie und Ökologie des Alpenschneehasen (Lepus timidus varronis Miller 1901). Verbreitung, Raumnutzung, Aktivität und Habitatwahl in den Hohen Tauern. Dissertation, Paris Lodron University Salzburg

  • Stenglein JL, Waits LP, Ausband DE, Zagerd P, Macke CM (2010) Efficient, noninvasive genetic sampling for monitoring reintroduced wolves. J Wildl Manage 74:1050–1058

    Article  Google Scholar 

  • Surridge AK, Bell DJ, Rico C, Hewitt GM (1997) Polymorphic microsatellite loci in the European rabbit (Oryctolagus cuniculus) are also amplified in other lagomorph species. Anim Genet 28:302–305

    Article  CAS  PubMed  Google Scholar 

  • Taberlet P, Luikart G (1999) Non-invasive genetic sampling and individual identification. Biol J Linn Soc 68:41–55

    Article  Google Scholar 

  • The National Red List project (2015) The National Red List. The National Red List project, London. http://www.nationalredlist.org. Accessed 12 Aug 2015

  • Thulin CG (2003) The distribution of mountain hares Lepus timidus in Europe: a challenge from brown hares L. europaeus? Mamm Rev 33:29–42

    Article  Google Scholar 

  • Thulin C-G, Flux JEC (2003) Lepus timidus Linnaeus, 1758–Schneehase. In: Krapp F (ed) Handbuch der Säugetiere Europas Band, 3/II: Hasenartige Lagomorpha. Aula Publisher, Wiebelsheim, pp 155–185

    Google Scholar 

  • Tizzani P, Menzano A, Dematteis A, Meneguz PG (2014) Methodological problems related to spotlight count as a census technique for Lepus europaeus in an alpine environment. Acta Theriol 59:271–276

    Article  Google Scholar 

  • Valière N (2002) GIMLET: a computer program for analysing genetic individual identification data. Mol Ecol Notes 2:377–379

    Article  Google Scholar 

  • Valière N, Bonenfant C, Toïgo C, Luikart G, Gaillard J-M, Klein F (2007) Importance of a pilot study for non-invasive genetic sampling: genotyping errors and population size estimation in red deer. Conserv Genet 8:69–78

    Article  Google Scholar 

  • Waits LP, Paetkau D (2005) Noninvasive genetic sampling tools for wildlife biologists: a review of applications and recommendations for accurate data collection. J Wildl Manage 69:1419–1433

    Article  Google Scholar 

  • Wallner B, Huber S, Achmann R (2001) Non-invasive PCR sexing of rabbits (Oryctolagus cuniculus) and hares (Lepus europaeus). Mamm Biol 66:190–192

    Google Scholar 

  • Witmer GW (2005) Wildlife population monitoring: some practical considerations. Wildl Res 32:259–263

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Swiss National Park for granting permission to conduct this study, M. Efford (University of Otago) for his excellent support in spatially explicit capture–recapture analyses and A. Buser (Ecogenics, Balgach) for conducting the genetic analyses. We are grateful to the Federal Office for the Environment FOEN, the Margarethe und Rudolf Gsell Foundation, Migros and the Bristol Foundation for financial support. E. Gleeson, C. Mosler-Berger, R. Holderegger, C. Rellstab, D. Csencsics and S. Brodbeck provided constructive and insightful comments on the manuscript. We acknowledge S. Dingwall for language editing. We finally thank Paulo C. Alves and four anonymous reviewers for constructive comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maik Rehnus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehnus, M., Bollmann, K. Non-invasive genetic population density estimation of mountain hares (Lepus timidus) in the Alps: systematic or opportunistic sampling?. Eur J Wildl Res 62, 737–747 (2016). https://doi.org/10.1007/s10344-016-1053-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10344-016-1053-6

Keywords

Navigation