Skip to main content

Advertisement

Log in

Infections shared with wildlife: an updated perspective

  • Review
  • Published:
European Journal of Wildlife Research Aims and scope Submit manuscript

Abstract

Infections shared with wildlife matter because many are zoonotic, because of their impact on animal health and in consequence on livestock production, and due to their adverse effects on conservation and on the sustainable use of wildlife. We describe recent environmental and societal changes that contribute to explain the current wildlife disease scenario, propose an updated list and ranking of relevant shared disease agents, illustrate key risk factors which often underlay shared infections, and provide a summary of recent progress in wildlife monitoring and disease control. We conclude, first, that there is a need for a better understanding of population dynamics and for good baseline data on wildlife population trends. Also, there is a need to adapt our wildlife management and disease control strategies to a context of growing conflicts and increasing social complexity. Second, a few pathogens appear consistently in the rankings of relevant shared diseases and tend to receive most attention from the scientific community. However, most current research on wildlife diseases is still descriptive. Therefore, a deeper understanding of disease ecology and progress in risk factor identification is needed. Third, interventions regarding wildlife diseases are rarely widespread and not necessarily successful, and three aspects need urgent regulation in order to improve wildlife health: wildlife feeding, disease control in farmed or translocated wildlife, and hunting offal disposal. While the drivers of disease emergence are still active, awareness is also growing in governmental and supra-governmental agencies, farmers, and the academy, contributing to create a fertile ground for future innovative disease control efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acevedo P, Ruiz-Fons F, Estrada R, Márquez AL, Miranda MA, Gortázar C, Lucientes J (2010) A broad assessment of factors determining Culicoides imicola abundance: modelling the present and forecasting its future in climate change scenarios. PLoS One 5(12):e14236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Acevedo P, Farfán MÁ, Márquez AL, Delibes-Mateos M, Real R, Vargas JM (2011) Past, present and future of wild ungulates in relation to changes in land use. Landsc Ecol 26:19–31

    Article  Google Scholar 

  • Apollonio M, Andersen R, Putman R (2010) Introduction. In: Apollonio M, Putman R (eds) European ungulates and their management in the 21st century. University Press, Cambrigde

    Google Scholar 

  • Báldi A, Faragó S (2007) Long-term changes of farmland game populations in a post-socialist country (Hungary). Agric Ecosyst Environ 118:307–311

    Article  Google Scholar 

  • Benton CH, Delahay RJ, Trewby H, Hodgson DJ (2014) What has molecular epidemiology ever done for wildlife disease research? Past contributions and future directions. Eur J Wildl Res 61:1–16

    Article  Google Scholar 

  • Bibby C, Hill DA, Burgess ND, Mustoe S (2000) Bird census techniques. Academic Press, Oxford, p 302

    Google Scholar 

  • Bichet C, Scheifler R, Coeurdassier M, Julliard R, Sorci G, Loiseau C (2013) Urbanization, trace metal pollution, and Malaria prevalence in the house sparrow. PLoS One 8(1):e53866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bisson IA, Ssebide BJ, Marra PP (2015) Early detection of emerging Zoonotic diseases with animal morbidity and mortality monitoring. Ecohealth 12:98–103

    Article  PubMed  Google Scholar 

  • Blanco G (1996) Population dynamics and communal roosting of white storks foraging at a Spanish refuse dump. Colon Waterbirds 19:273–276

    Article  Google Scholar 

  • Boadella M, Gortazar C, Acevedo P, Carta T, Martin-Hernando MP, de la Fuente J, Vicente J (2011) Six recommendations for improving monitoring of diseases shared with wildlife: examples regarding mycobacterial infections in Spain. Eur J Wildl Res 57:697–706

    Article  Google Scholar 

  • Byrne AW, Kenny K, Fogarty U, O’Keeffe JJ, More SJ, McGrath G, Teeling M, Martin SW, Dohoo IR (2016) Spatial and temporal analyses of metrics of tuberculosis infection inbadgers (Meles meles) from the Republic of Ireland: trends in apparent prevalence. Prev Vet Med (in press)

  • Cahil S, Llimona F, Cabañeros L, Calomardo F (2012) Characteristics of wild boar (Sus scrofa) habituation to urban areas in the Collserola natural park (Barcelona) and comparison with other locations. Anim Biodivers Conserv 35:221–233

    Google Scholar 

  • Camacho MC, Hernández JM, Torrontegui Y, Barral M, Höfle U (2016) Use of wildlife rehabilitation centers in pathogen surveillance: a case study in white storks (Ciconia ciconia). Prev Vet Med (under revision)

  • Caron A, Cappelle J, Cumming GS, de Garine-Wichatitsky M, Gaidet N (2015) Bridge hosts, a missing link for disease ecology in multi-host systems. Vet Res 46:83

    Article  PubMed  PubMed Central  Google Scholar 

  • Carroll D, Wang J, Fanning S, McMahon BJ (2015) Antimicrobial resistance in wildlife: implications for public health. Zoonoses Public Health 62(7):534–542

    Article  CAS  PubMed  Google Scholar 

  • Chávez-Zichinelli CA, MacGregor-Forsa I, Talamás Rohana P, Valdéz R, Romano MC, Schondube J (2010) Stress responses of the house sparrow (Passer domesticus) to different urban land uses. Landsc Urban Plan 98:183–199

    Article  Google Scholar 

  • Ciliberti A, Gavier-Widén D, Yon L, Hutchings MR, Artois M (2015) Prioritisation of wildlife pathogens to be targeted in European surveillance programmes: expert-based risk analysis focus on ruminants. Prev Vet Med 118:271–284

    Article  PubMed  Google Scholar 

  • Costard S, Mur L, Lubroth J, Sanchez-Vizcaino JM, Pfeiffer DU (2013) Epidemiology of African swine fever virus. Virus Res 173:191–197

    Article  CAS  PubMed  Google Scholar 

  • Cowie CE, Beck BB, Gortazar C, Vicente J, Hutchings MR, Moran D, White PCL (2014) Risk factors for the detected presence of Mycobacterium bovis in cattle in south central Spain. Eur J Wildl Res 60(1):113–123

    Article  Google Scholar 

  • Cowie CE, Gortázar C, White PCL, Hutchings MR, Vicente J (2015) Stakeholder opinions on the practicality of management interventions to control bovine tuberculosis. Vet J 204:179–185

    Article  PubMed  Google Scholar 

  • Cunningham AA (1996) Disease risks of wildlife translocations. Conserv Biol 10:349–353

    Article  Google Scholar 

  • Daniels MJ, Hutchings MR, Greig A (2003) The risk of disease transmission to livestock posed by contamination of farm stored feed by wildlife excreta. Epidemiol Infect 130(3):561–568

    CAS  PubMed  PubMed Central  Google Scholar 

  • Delibes-Mateos M, Ferreira C, Carro F, Escudero M, Gortázar C (2014) Ecosystem effects of variant rabbit hemorrhagic disease virus, Iberian Peninsula. Emerg Infect Dis 20:2166–2168

    Article  PubMed  PubMed Central  Google Scholar 

  • Díaz-Sánchez S, Sánchez S, Ewers C, Höfle U (2012) Occurrence of avian pathogenic Escherichia coli and antimicrobial-resistant E. coli in red-legged partridges (Alectoris rufa): sanitary concerns of farming. Avian Pathol 41(4):337–344

    Article  PubMed  Google Scholar 

  • Engler O, Savini G, Papa A, Figuerola J, Groschup MH, Kampen H, Medlock J, Vaux A, Wilson AJ, Werner D, Jöst H, Goffredo M, Capelli G, Federici V, Tonolla M, Patocchi N, Flacio E, Portmann J, Rossi-Pedruzzi A, Mourelatos S, Ruiz S, Vázquez A, Calzolari M, Bonilauri P, Dottori M, Schaffner F, Mathis A, Johnson N (2013) European surveillance for West Nile virus in mosquito populations. Int J Environ Res Public Health 10:4869–4895

    Article  PubMed  PubMed Central  Google Scholar 

  • Estrada-Peña A, Ostfeld RS, Peterson AT, Poulin R, de la Fuente J (2014) Effects of environmental change on zoonotic disease risk: an ecological primer. Trends Parasitol 30(4):205–214

    Article  PubMed  Google Scholar 

  • European Food Safety Agency (EFSA) (2014) Evaluation of possible mitigation measures to prevent introduction and spread of African swine fever virus through wild boar. EFSA J 12(3):3616

    Article  Google Scholar 

  • Ewers C, Grobbel M, Bethe A, Wieler LH, Guenther S (2011) Extended-spectrum beta-lactamases-producing gram-negative bacteria in companion animals: action is clearly warranted. Berl Munch Tierarztl Wochenschr 124:94–101

    PubMed  Google Scholar 

  • Frank B, Monaco A, Bath AJ (2015) Beyond standard wildlife management: a pathway to encompass human dimension findings in wild boar management. Eur J Wildl Res 61:723–730

    Article  Google Scholar 

  • Fuchs R, Herold M, Verburg PH, Clevers JGPW, Eberle J (2015) Gross changes in reconstructions of historic land cover/use for Europe between 1900 and 2010. Glob Chang Biol 21:299–313

    Article  PubMed  Google Scholar 

  • Gaukler S, Homan J, Linz G, Bleier W (2012) Using radio-telemetry to assess the risk European starlings pose in pathogen transmission among feedlots. Hum Wildl Interact 6:30–37

    Google Scholar 

  • Gavier-Widén D, Ståhl K, Neimanis AS, Hård av Segerstad C, Gortázar C, Rossi S, Kuiken T (2015) African swine fever in wild boar in Europe: a notable challenge. Vet Rec 176:199–2

    Article  PubMed  Google Scholar 

  • Gilbert L, Norman R, Laurenson KM, Reid HW, Hudson PJ (2001) Disease persistence and apparent competition in a three-host community: an empirical and analytical study of large-scale, wild populations. J Anim Ecol 70:1053–1061

    Article  Google Scholar 

  • Gomez P, Lozano C, Camacho MC, LimaBarbero JF, Hernandez JM, Zarazagai M, Höfle U, Torres C (2015) Detection of MRSA ST3061-t843-mecC and ST398-t011-mecA in white stork nestlings exposed to human residues. J Antimicrob Chemother. doi:10.1093/jac/dkv314

    Google Scholar 

  • Gortázar C, Acevedo P, Ruiz-Fons F, Vicente J (2006) Disease risks and overabundance of game species. Eur J Wildl Res 52:81–87

    Article  Google Scholar 

  • Gortázar C, Ferroglio E, Höfle U, Frölich K, Vicente J (2007) Diseases shared between wildlife and livestock: a European perspective. Eur J Wildl Res 53:241–256

    Article  Google Scholar 

  • Gortázar C, Ferroglio E, Lutton C, Acevedo P (2010) Disease-related conflicts in mammal conservation. Wildl Res 37:668–675

    Article  Google Scholar 

  • Gortázar C, Reperant LA, Kuiken T, de la Fuente J, Boadella M, Martínez-Lopez B, Ruiz-Fons F, Estrada-Peña A, Drosten C, Medley G, Ostfeld R, Peterson T, VerCauteren KC, Menge C, Artois M, Schultsz C, Delahay R, Serra-Cobo J, Poulin R, Keck F, Aguirre A, Henttonen H, Dobson AP, Kutz S, Lubroth J, Mysterud A (2014) Crossing the interspecies barrier: opening the door to Zoonotic pathogens. PLoS Pathog 10(6):e1004129. doi:10.1371/journal.ppat.1004129

    Article  PubMed  PubMed Central  Google Scholar 

  • Gortázar C, Che-Amat A, O’ Brien D (2015a) Open questions and recent advances in the control of a multi-host infectious disease: animal tuberculosis. Mammal Rev 45:160–175

    Article  Google Scholar 

  • Gortázar C, Diez-Delgado I, Barasona JA, Vicente J, de la Fuente J, Boadella M (2015b) The wild side of disease control at the wildlife-livestock-human interface: a review. Front Vet Sci 1:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Gortázar C, Vicente J, Villar M, Ruiz-Fons F, Höfle U, de la Fuente J (2016) Research priorities and trends in infectious diseases shared with wildlife. In: Current trends in wildlife research. Springer, Heidelberg

    Google Scholar 

  • Guerra B, Fischer J, Helmuth R (2014) An emerging public health problem: acquired carbapenemase-producing microorganisms are present in food-producing animals, their environment, companion animals and wild birds. Vet Microbiol 171(3–4):290–297

    Article  PubMed  Google Scholar 

  • Herrera-Dueñas A, Pineda J, Antonio MT, Aguirre JI (2014) Oxidative stress of house sparrow as bioindicator of urban pollution. Ecol Indic 42:6–9

    Article  Google Scholar 

  • Horton RA, Wu G, Speed K, Kidd S, Davies R, Coldham NG, Duff JP (2013) Wild birds carry similar Salmonella enterica serovar Typhimurium strains to those found in domestic animals and livestock. Res Vet Sci 95(1):45–48

    Article  CAS  PubMed  Google Scholar 

  • Hoye BJ, Munster VJ, Nishiura H, Klaassen M, Fouchier RAM (2010) Surveillance of wild birds for avian influenza virus. Emerg Infect Dis 16:1827–1834

    Article  PubMed  PubMed Central  Google Scholar 

  • Jerina K, Pokorny B, Stergar M (2014) First evidence of long-distance dispersal of adult female wild boar (Sus scrofa) with piglets. Eur J Wildl Res 60:367–370

    Article  Google Scholar 

  • Jones JC, Sonnberg S, Koçer ZA, Shanmuganatham K, Seiler P, Shu Y, Zhu H, Guan Y, Peiris M, Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P (2008) Global trends in emerging infectious diseases. Nature 451:990–994

    Article  CAS  PubMed  Google Scholar 

  • Kaczensky P, Chapron G, von Arx M, Huber D, Andrén H and Linnell J (2013) Status, management and distribution of large carnivores—bear, lynx, wolf and wolverine in Europe. Part 1. [Online]. LCIE, 72 pp. Available: http://ec.europa.eu/environment/nature/conservation/species/carnivores/pdf/task_1_part1_statusoflcineurope.pdf. Accessed 10 September 2014

  • Khomenko S, Beltran-Alcrudo D, Rozstalnyy A, Gogin A, Kolbasov D, Pinto J, Lubroth J, Martin V (2013) African swine fever in the Russian Federation: risk factors for Europe and beyond. Empres Watch 28:1–14

    Google Scholar 

  • Komar N, Langevin S, Hinten S, Nemeth N, Edwards E, Hettler D, Davis BS, Bowen RA, Bunning ML (2003) Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerg Infect Dis 9(3):311–322

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuiken T, Ryser-Degiorgis MP, Gavier-Widén D, Gortázar C (2011) Establishing a European network for wildlife health surveillance. Rev Sci Tech 30(3):755–761

    CAS  PubMed  Google Scholar 

  • Labuda M, Randolph SE (1999) Survival strategy of tick-borne encephalitis virus: cellular basis and environmental determinants. Zentralbl Bakteriol 289(5–7):513–524

    Article  CAS  PubMed  Google Scholar 

  • Laddomada A, Patta C, Oggiano A, Caccia A, Ruiu A, Cossu P, Firinu A (1994) Epidemiology of classical swine fever in Sardinia: a serological survey of wild boar and comparison with African swine fever. Vet Rec 19:183–187

    Article  Google Scholar 

  • Louv R (2006) Last child in the woods: saving our children from nature-deficit disorder. Algonquin Books, New York

    Google Scholar 

  • Marques SF, Rocha RG, Mendes ES, Fonseca C, Ferreira JP (2015) Influence of landscape heterogeneity and meteorological features on small mammal abundance and richness in a coastal wetland system, NW Portugal. Eur J Wildl Res 61:749–761

    Article  Google Scholar 

  • Martínez-López B, Perez AM, Feliziani F, Rolesu S, Mur L, Sánchez-Vizcaíno JM (2015) Evaluation of the risk factors contributing to the African swine fever occurrence in Sardinia, Italy. Front Microbiol 6:314

    Article  PubMed  PubMed Central  Google Scholar 

  • Massei G, Cowan D (2014) Fertility control to mitigate human-wildlife conflicts: a review. Wildl Res 41:1–21

    Article  Google Scholar 

  • Massei G, Kindberg J, Licoppe A, Gačić D, Šprem N, Kamler J, Baubet E, Hohmann U, Monaco A, Ozoliņš J, Cellina S, Podgórski T, Fonseca C, Markov N, Pokorny B, Rosell C, Náhlik A (2015) Wild boar populations up, numbers of hunters down? A review of trends and implications for Europe. Pest Manag Sci 71:492–500

    Article  CAS  PubMed  Google Scholar 

  • Mateo-Tomás P, Olea PP (2010) When hunting benefits raptors: a case study of game species and vultures. Eur J Wildl Res 56:613–621

    Article  Google Scholar 

  • Milner JM, Bonenfant C, Mysterud A, Gaillard JM, Csányi S, Stenseth NC (2006) Temporal and spatial development of red deer harvesting in Europe: biological and cultural factors. J Appl Ecol 43:721–734

    Article  Google Scholar 

  • Milner JM, Van Beest FM, Schmidt KT, Brook RK, Storaas T (2014) To feed or not to feed? Evidence of the intended and unintended effects of feeding wild ungulates. J Wildl Manag 78:1322–1334

    Article  Google Scholar 

  • Müller T, Selhorst T, Pötzsch C (2005) Fox rabies in Germany—an update. Euro Surveill 10(11):229–231

    PubMed  Google Scholar 

  • Mur L, Boadella M, Martinez-Lopez B, Gallardo C, Gortazar C, Sanchez-Vizcaino JM (2012) Monitoring of African swine fever in the wild boar population of the most recent endemic area of Spain. Transbound Emerg Dis 59(6):526–531

    Article  CAS  PubMed  Google Scholar 

  • Pietschmann J, Guinat C, Beer M, Pronin V, Tauscher K, Petrov A, Keil G, Blome S (2015) Course and transmission characteristics of oral low-dose infection of domestic pigs and European wild boar with a Caucasian African swine fever virus isolate. Arch Virol 160:1657–1667

    Article  CAS  PubMed  Google Scholar 

  • Prescott JF (2014) The resistance tsunami, antimicrobial stewardship, and the golden age of microbiology. Vet Microbiol 171(3–4):273–278

    Article  PubMed  Google Scholar 

  • Robinson RA, Lawson B, Toms MP, Peck KM, Kirkwood JK, Chantrey J, Clatworthy IR, Evans AD, Hughes LA, Hutchinson OC, John SK, Pennycott TW, Perkins MW, Rowley PS, Simpson VR, Tyler KM, Cunningham AA (2010) Emerging infectious disease leads to rapid population declines of common British birds. PLoS One 5:e12215

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Hidalgo P, Gortázar C, Tortosa FS, Rodriguez-Vigal C, Fierro Y, Vicente J (2010) Effects of density, climate, and supplementary forage on body mass and pregnancy rates of female red deer in Spain. Oecologia 164:389–398

    Article  PubMed  Google Scholar 

  • Rodríguez-Prieto V, Martínez-López B, Barasona JA, Acevedo P, Romero B, Rodriguez-Campos S, Gortázar C, Sánchez-Vizcaíno JM, Vicente J (2012) A Bayesian approach to study the risk variables for tuberculosis occurrence in domestic and wild ungulates in South Central Spain. BMC Vet Res 8:148

    Article  PubMed  PubMed Central  Google Scholar 

  • Rossi S, Pioz M, Beard E, Durand B, Gibert P, Gauthier D, Klein F, Maillard D, Saint-Andrieux C, Saubusse T, Hars J (2014) Bluetongue dynamics in French wildlife: exploring the driving forces. Transbound Emerg Dis 61:e12–e24

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Fons F (2012) African Swine Fever. In: Gavier-Widén D, Duff JP, Meredith A. (eds.) Infectious diseases of wild mammals and birds in Europe. ISBN: 978-1-4051-9905-6. p 568

  • Ruiz-Fons F (2015) A review of the current status of relevant Zoonotic pathogens in wild swine (Sus scrofa) populations: changes modulating the risk of transmission to humans. Transbound Emerg Dis. doi:10.1111/tbed.12369

    Google Scholar 

  • Ruiz-Fons F, Gilbert L (2010) The role of deer as vehicles to move ticks, Ixodes ricinus, between contrasting habitats. Int J Parasitol 40:1013–1020

    Article  PubMed  Google Scholar 

  • Ruiz-Fons F, Fernández-de-Mera IG, Acevedo P, Höfle U, Vicente J, de la Fuente J, Gortázar C (2006) Ixodid ticks parasitizing Iberian red deer (Cervus elaphus hispanicus) and European wild boar (Sus scrofa) from Spain: geographical and temporal distribution. Vet Parasitol 140(1–2):133–142

    Article  PubMed  Google Scholar 

  • Ruiz-Fons F, Fernández-de-Mera IG, Acevedo P, Gortázar C, de la Fuente J (2012) Factors driving the abundance of Ixodes ricinus ticks and the prevalence of Zoonotic I. ricinus-borne pathogens in natural foci. Appl Environ Microbiol 78(8):2669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Fons F, Acevedo P, Sobrino R, Vicente J, Fierro Y, Fernández-de-Mera IG (2013) Sex-biased differences in the effects of host individual, host population and environmental traits driving tick parasitism in red deer. Front Cell Infect Immun 3:23

    Google Scholar 

  • Sánchez-Vizcaíno JM, Mur L, Gomez-Villamandos JC, Carrasco L (2015) An update on the epidemiology and pathology of African swine fever. J Comp Pathol 152:9–21

    Article  PubMed  Google Scholar 

  • Semenza JC, Zeller H (2014) Integrated surveillance for prevention and control of emerging vector-borne diseases in Europe. Euro Surveill 9(13):20757

    Article  Google Scholar 

  • Singh BB, Gajadhar AA (2014) Role of India’s wildlife in the emergence and re-emergence of zoonotic pathogens, risk factors and public health implications. Acta Trop 138:67–77

    Article  CAS  PubMed  Google Scholar 

  • Taragel’ová V, Koci J, Hanincová K, Kurtenbach K, Derdáková M, Ogden NH, Literák I, Kocianová E, Labuda M (2008) Blackbirds and song thrushes constitute a key reservoir of Borrelia garinii, the causative agent of borreliosis in Central Europe. Appl Environ Microbiol 74(4):1289–1293

    Article  PubMed  Google Scholar 

  • Vicente J, Höfle U, Fernández-de-Mera IG, Gortázar C (2007) The importance of parasite life-history and host density in predicting the impact of infections in red deer (TB and E. cervi). Oecologia 152:655–664

    Article  PubMed  Google Scholar 

  • Vicente J, Carrasco R, Acevedo P, Montoro V, Gortazar C (2011) Big game waste production: sanitary and ecological implications, integrated waste management—volume II, Mr. Sunil Kumar (Ed.) ISBN: 978-953-307-447-4. InTech, DOI: 10.5772/21426. Available from: http://www.intechopen.com/books/integrated-waste-management-volume-ii/big-game-waste-production-sanitary-and-ecological-implications

  • Vicente J, Barasona JA, Acevedo P, Ruiz-Fons JF, Boadella M, Diez-Delgado I, Beltran-Beck B, González-Barrio D, Queirós J, Montoro V, de la Fuente J, Gortazar C (2013) Temporal trend of tuberculosis in wild ungulates from Mediterranean Spain. Transbound Emerg Dis 60:92–103

    Article  PubMed  Google Scholar 

  • Wiethoelter AK, Beltrán-Alcrudo D, Kock R, Mor SM (2015) Global trends in infectious diseases at the wildlife–livestock interface. Proc Natl Acad Sci U S A 112:31, www.pnas.org/cgi/doi/10.1073/pnas.1422741112

    Article  Google Scholar 

Download references

Acknowledgments

Research funding is acknowledged to Plan Nacional grant AGL2014-56305 (MINECO, Spain and FEDER) and the EU FP7 grants ANTIGONE no. 278976 and H2020 grant COMPARE no. 377/14. FRF acknowledges a Ramón y Cajal contract from MINECO, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Gortázar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gortázar, C., Ruiz-Fons, J.F. & Höfle, U. Infections shared with wildlife: an updated perspective. Eur J Wildl Res 62, 511–525 (2016). https://doi.org/10.1007/s10344-016-1033-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10344-016-1033-x

Keywords

Navigation