European Journal of Wildlife Research

, Volume 62, Issue 4, pp 483–489 | Cite as

Uncapped tubular poles along high-speed railway lines act as pitfall traps for cavity nesting birds

  • Juan E. MaloEmail author
  • Eladio L. García de la Morena
  • Israel Hervás
  • Cristina Mata
  • Jesús Herranz
Original Article


Man-made ecosystems, such as those associated with transport infrastructure, are common worldwide, offering both opportunities and risks to wildlife. Thus, it is essential to ensure the appropriate design and monitoring of such structures to facilitate their integration into the environment. Here, we investigated the impact of uncapped tubular poles supporting the overhead wires (termed catenary) along a 19.1-km stretch of the Madrid-Levante high-speed railway line in central Spain on birds in the surrounding environment. A total of 162 bird carcasses were found in the 96 poles three and a half years after construction of the railway, showing that these poles inadvertently function as pitfall traps for birds. Repeat monitoring of a subsample of 61 poles 88 and 105 weeks later revealed a further 38 carcasses. Mortality was significantly higher at certain poles; however, no temporal or spatial pattern at the landscape scale was detected. Eight out of 10 species found dead were cavity nesters, with the Spotless Starling Sturnus unicolor being the most affected species. Two species, the Lesser Kestrel Falco naumanni and the Little Owl Athene noctua, are regionally, nationally and internationally protected, with several open-country species with declining trends also being detected. Given the extent of this type of infrastructure in Spain, we estimate that several thousand birds die as a result of uncapped tubular poles annually. This problem could be easily averted by the compulsory use of capped poles, which would prevent birds from falling inside, along railway lines and other similar infrastructure erected in natural environments that may have a similar impact.


Bird mortality Catenary Impact assessment Mitigation Monitoring Transport infrastructure 



Jorge Hernández Justribó, Mª José Pérez Sobola, Diego Sánchez Serrano and safety personnel from Centro de Estudios y Experimentación of the Ministry for Public Works (CEDEX) and Ineco helped us at different stages of the fieldwork, while Laura Llorente and Arturo Morales from the Archaeozoology Laboratory at Universidad Autónoma de Madrid (UAM) identified several carcasses. Manuel Gª Sánchez-Colomer and Sarah Ruiz Arriaga from CEDEX and the staff from Adif kindly helped with project logistics. Comments by two anonymous referees improved the final content of the paper.

Compliance with ethical standards


This study was carried out as part of research projects LIFE+ Impacto 0 (LIFE 12 BIO/ES/000660) and a research agreement between UAM and CEDEX, both of which were focused on the mitigation of high-speed railway impact on bird populations. The Comunidad de Madrid, together with the European Social Fund, supports the Terrestrial Ecology Group research group (all authors) through the REMEDINAL-3 Research Network (S-2013/MAE-2719).

Conflict of interest

The authors do not state any conflict of interest in the present study.

Ethical approval

All data in the paper correspond to carcasses from naturally fallen birds in poles. The experimentation in this paper complies with international and national regulations, as well as with institutional guidelines for research.


  1. Adif (2015) Líneas de Alta Velocidad. Adif Alta Velocidad, Administrador de Infraestructuras Ferroviarias. Madrid, Spain. Accessed 3 Dec 2015
  2. Battin J (2004) When good animals love bad habitats: ecological traps and the conservation of animal populations. Conserv Biol 18:1482–1491CrossRefGoogle Scholar
  3. Benítez-López A, Alkemade R, Verweij PA (2010) The impacts of roads and other infrastructure on mammal and bird populations: a meta-analysis. Biol Conserv 143:1307–1316CrossRefGoogle Scholar
  4. Birkhead TR (1991) The magpies. The ecology and behavior of black-billed and yellow-billed magpies. T and A D Poyser Ltd., LondonGoogle Scholar
  5. Bjorkland R (2013) Monitoring: the missing piece. A critique of NEPA monitoring. Environ Impact Assess Rev 43:129–134CrossRefGoogle Scholar
  6. Brattstrom BH (1995) Wildlife mortalities in PVC claim posts. Wildl Soc Bull 23:765–766Google Scholar
  7. Calabuig G, Ortego J, Aparicio JM, Cordero PJ (2010) Intercolony movements and prospecting behaviour in the colonial lesser kestrel. Anim Behav 79:811–817CrossRefGoogle Scholar
  8. Campos J, de Rus G (2009) Some stylized facts about high-speed rail: a review of HSR experiences around the world. Transp Policy 16:19–28CrossRefGoogle Scholar
  9. Catry I, Franco AMA, Rocha P, Alcazar R, Reis S, Cordeiro A, Ventim R, Teodósio J, Moreira F (2013) Foraging habitat quality constrains effectiveness of artificial nest-site provisioning in reversing population declines in a colonial cavity nester. PLoS One. doi: 10.1371/journal.pone.0058320 Google Scholar
  10. Chamberlain DE, Cannon AR, Toms MP, Leech DI, Hatchwell BJ, Gaston KJ (2009) Avian productivity in urban landscapes: a review and meta-analysis. Ibis 151:1–18CrossRefGoogle Scholar
  11. Clavel J, Julliard R, Devictor V (2011) Worldwide decline of specialist species: toward a global functional homogenization? Front Ecol Environ 9:222–228CrossRefGoogle Scholar
  12. CLM (1998) Decreto 33/1998, de 5 de mayo, por el que crea el Catálogo Regional de Especies Amenazadas de Castilla-La Mancha (Modificado Ley 9/1999 y Decreto 200/2001). Diario Oficial Castilla-La Mancha 22:3391–3398Google Scholar
  13. Cobra (2015) Featured projects-railways. Business areas: networking, installation, assembly, and service. Grupo Cobra. Accessed 3 Dec 2015
  14. Costantini D, Dell’omo G, La Fata I, Casagrande S (2014) Reproductive performance of Eurasian Kestrel Falco tinnunculus in an agricultural landscape with a mosaic of land uses. Ibis 156:768–776CrossRefGoogle Scholar
  15. de Laet J, Summers-Smith JD (2007) The status of the urban house sparrow Passer domesticus in north-western Europe: a review. J Ornithol 148:275–278CrossRefGoogle Scholar
  16. Devictor V, Julliard R, Couvet D, Lee A, Jiguet F (2007) Functional homogenization effect of urbanization on bird communities. Conserv Biol 21:741–751CrossRefPubMedGoogle Scholar
  17. EC (2009) Directive 2009/147/EC of the European Parliament and of the Council of 30 November 2009 on the conservation of wild birds Accessed 3 Dec 2015
  18. Fu X, Zhang A, Lei Z (2012) Will China’s airline industry survive the entry of high-speed rail? Res Transp Econ 35:13–25CrossRefGoogle Scholar
  19. Gottschalk TK, Ekschmitt K, Wolters V (2011) Efficient placement of nest boxes for the little owl (Athene noctua). J Raptor Res 45:1–14CrossRefGoogle Scholar
  20. Grantham HS, Bode M, McDonald-Madden E, Game ET, Knight AT, Possingham HP (2010) Effective conservation planning requires learning and adaptation. Front Ecol Environ 8:431–437CrossRefGoogle Scholar
  21. Gregory RD, Vorisek P, Van Strien A, Gmelig Meyling AW, Jiguet F, Fornasari L, Reif J, Chylarecki P, Burfield IJ (2007) Population trends of widespread woodland birds in Europe. Ibis 149(Suppl 2):78–97CrossRefGoogle Scholar
  22. Guinard É, Julliard R, Barbraud C (2012) Motorways and bird traffic casualties: carcasses surveys and scavenging bias. Biol Conserv 147:40–51CrossRefGoogle Scholar
  23. Gunson KE, Mountrakis G, Quackenbush LJ (2011) Spatial wildlife-vehicle collision models: a review of current work and its application to transportation mitigation projects. J Environ Manage 92:1074–1082CrossRefPubMedGoogle Scholar
  24. Hathcock CD, Fair JM (2014) Hazards to birds from open metal pipes. West N Am Nat 74:228–230CrossRefGoogle Scholar
  25. Hernández M (1988) Road mortality in the Little Owl (Athene noctua) in Spain. J Raptor Res 22:81–84Google Scholar
  26. Herranz J, de la Morena EL G, Hervás I, Mata C, Malo JE (2013) Accidentalidad de aves en un tramo de línea de ferrocarril de alta velocidad. Abril de 2013. Informe inédito. Dpto. de Ecología. Universidad Autónoma de Madrid - CEDEX/Ministerio de Fomento, MadridGoogle Scholar
  27. Hervás I, Herranz J, de la Morena EL G, Mollá S, Oñate JJ, Suárez F (2012) Censo y radio-seguimiento de aves en una línea de alta velocidad en explotación. Mayo de 2012. Informe inédito. Dpto. de Ecología. Universidad Autónoma de Madrid - CEDEX/Ministerio de Fomento, MadridGoogle Scholar
  28. Hunter ML (1996) Fundamentals of conservation biology. Blackwell Science, CambridgeGoogle Scholar
  29. Inger R, Gregory R, Duffy JP, Stott I, Voříšek P, Gaston KJ (2015) Common European birds are declining rapidly while less abundant species’ numbers are rising. Ecol Lett 18:28–36CrossRefPubMedGoogle Scholar
  30. IUCN (2014) The IUCN red list of threatened species. Version 2014.3. Downloaded on 3 Dec 2015.
  31. Jiguet F, Gregory RD, Devictor V, Green RE, Voříšek P, Van Strien A, Couvet D (2010) Population trends of European common birds are predicted by characteristics of their climatic niche. Glob Chang Biol 16:497–505CrossRefGoogle Scholar
  32. Lancaster RK, Rees WE (1979) Bird communities and the structure of urban habitats. Can J Zool 57:2358–2368CrossRefGoogle Scholar
  33. Lombardo MP (1987) Attendants at tree swallow nests. II. The exploratory-dispersal hypothesis. Condor 89:138–149CrossRefGoogle Scholar
  34. Loss SR, Will T, Marra PP (2012) Direct human-caused mortality of birds: improving quantification of magnitude and assessment of population impact. Front Ecol Environ 10:357–364CrossRefGoogle Scholar
  35. Loss SR, Will T, Marra PP (2015) Direct mortality of birds from anthropogenic causes. Annu Rev Ecol Evol Syst 46:99–120CrossRefGoogle Scholar
  36. MAGRAMA (2011) Real Decreto 139/2011, de 4 de febrero, para el desarrollo del Listado de Especies Silvestres en Régimen de Protección Especial y del Catálogo Español de Especies Amenazadas. BOE 46: 20912–20951Google Scholar
  37. Malo JE, Suárez F, Díez A (2004) Can we mitigate animal-vehicle accidents using predictive models? J Appl Ecol 41:701–710CrossRefGoogle Scholar
  38. McKinney ML (2008) Effects of urbanization on species richness: a review of plants and animals. Urban Ecosyst 11:171–176CrossRefGoogle Scholar
  39. McKinney ML, Lockwood JL (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol Evol 14:450–453CrossRefPubMedGoogle Scholar
  40. Morelli F, Beim M, Jerzak L, Jones D, Tryjanowski P (2014) Can roads, railways and related structures have positive effects on birds?—a review. Transp Res D 30:21–31CrossRefGoogle Scholar
  41. Morrison-Saunders A, Arts J (2005) Learning from experience: emerging trends in environmental impact assessment follow-up. Impact Assess Proj Apprais 23:170–174CrossRefGoogle Scholar
  42. Nichols JD, Williams BK (2006) Monitoring for conservation. Trends Ecol Evol 21:668–673CrossRefPubMedGoogle Scholar
  43. Olden JD, Poff NL, Douglas MR, Douglas ME, Fausch KD (2004) Ecological and evolutionary consequences of biotic homogenization. Trends Ecol Evol 19:18–24CrossRefPubMedGoogle Scholar
  44. Robinson RA, Lawson B, Toms MP, Peck KM, Kirkwood JK, Chantrey J, Clatworthy IR, Evans AD, Hughes LA, Hutchinson OC, John SK, Pennycott TW, Perkins MW, Rowley PS, Simpson VR, Tyler KM, Cunningham AA (2010) Emerging infectious disease leads to rapid population declines of common British birds. PLoS One 5(8):e12215. doi: 10.1371/journal.pone.0012215 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Rodríguez JJ, García de la Morena E, González D (2008) Estudio de las medidas correctoras para reducir las colisiones de aves con ferrocarriles de alta velocidad. Centro de Estudios y Experimentación, Ministerio de Fomento, MadridGoogle Scholar
  46. Rosenberg MS, Anderson CD (2011) PASSaGE: pattern analysis, spatial statistics and geographic exegesis. Version 2. Methods Ecol Evol 2:229–232CrossRefGoogle Scholar
  47. Ruiz-Capillas P, Mata C, Malo JE (2013) Road verges are refuges for small mammal populations in extensively managed Mediterranean landscapes. Biol Conserv 158:223–229CrossRefGoogle Scholar
  48. Rytwinski T, Fahrig L (2012) Do species life history traits explain population responses to roads? A meta-analysis. Biol Conserv 147:87–98CrossRefGoogle Scholar
  49. SEO/Birdlife (2013) Resultados del programa Sacre 1996–2013. SEO/BirdLife, MadridGoogle Scholar
  50. Smith HG, Ryegård A, Svensson S (2012) Is the large-scale decline of the starling related to local changes in demography? Ecography 35:741–748CrossRefGoogle Scholar
  51. StatSoft Inc (2007) STATISTICA (data analysis software system), version 8.0. TulsaGoogle Scholar
  52. Todorovich P, Schned D, Lane R (2011) High-speed rail. International lessons for U.S. policy makers. Lincoln Institute of Land Policy, CambridgeGoogle Scholar
  53. Voříšek P, Jiguet F, Van Strien A, Škorpilová J, Klvaňová A, Gregory RD (2010) Trends in abundance and biomass of widespread European farmland birds: how much have we lost? BOU Proceedings—Lowland Farmland Birds III.‐net/lfb3/vorisek‐etal.pdf. Accessed 3 Dec 2015
  54. Wang Y, Chen S, Jiang P, Ding P (2008) Black-billed magpies (Pica pica) adjust nest characteristics to adapt to urbanization in Hangzhou, China. Can J Zool 86:676–684CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Terrestrial Ecology Group, Departamento de EcologíaUniversidad Autónoma de MadridMadridSpain
  2. 2.SECIM, Servicios Especializados de Consultoría e Investigación MedioambientalManzanares el RealSpain

Personalised recommendations