Advertisement

European Journal of Wildlife Research

, Volume 62, Issue 4, pp 395–405 | Cite as

Gross intestinal morphometry and allometry in Carnivora

  • Amanda McGrosky
  • Ana Navarrete
  • Karin Isler
  • Peter Langer
  • Marcus ClaussEmail author
Original Article

Abstract

Although typical anatomical features of the digestive tract of carnivores are well known, such as the presence or absence of a caecum in various carnivore taxa, and although a large number of length measurements have been published, the body mass measurement of the corresponding specimens has mostly not been reported. Here, we add original mass and intestine length measurements for 36 carnivore species to literature data. Using Phylogenetic Generalized Least Squares, we demonstrate that marine Carnivora (pinnipeds and the sea otter Enhydra lutris) have significantly longer total and small intestines relative to body mass than terrestrial Carnivora, and both pinnipeds and mustelids in general have particularly long total intestines amongst terrestrial Carnivora. The natural diet explains little about variation in relative intestinal length measures. However, amongst species that do have a caecum, a higher proportion of plant material in the diet might be associated with a longer caecum. In particular, a diet with higher proportions of plant material provided by humans could have led to a particularly long caecum in the domestic dog.

Keywords

Canid Felid Ursid Viverrid Jejunum Colon 

Notes

Acknowledgments

The collection of the specimens by AN was supported by the Swiss National Science Foundation (grant number 3100A0-117789), the A.H. Schultz-Stiftung and the European Integrated Activities grant SYNTHESYS (grant application number HU-TAF-4916). We thank Jeanne Peters for the work on the digital images.

References

  1. Anderson M, Richardson P, Woodall P (1992) Functional analyses of the feeding apparatus and digestive tract anatomy of the aardwolf (Proteles cristatus). J Zool (Lond) 228:423–434CrossRefGoogle Scholar
  2. Axelsson E, Ratnakumar A, Arendt ML, Maqbool K, Webster MT, Perloski M, Liberg O, Arnemo JM, Hedhammar Å, Lindblad-Toh K (2013) The genomic signature of dog domestication reveals adaptation to a starch-rich diet. Nature 495:360–364CrossRefPubMedGoogle Scholar
  3. Bininda-Emonds ORP, Cardillo M, Jones KE, MacPhee RDE, Beck RMD, Grenyer R, Price SA, Vos RA, Gittleman JL, Purvis A (2007) The delayed rise of present-day mammals. Nature 446:507–512CrossRefPubMedGoogle Scholar
  4. Bininda-Emonds ORP, Cardillo M, Jones KE, MacPhee RDE, Beck RMD, Grenyer R, Price SA, Vos RA, Gittleman JL, Purvis A (2008) Corrigendum: the delayed rise of present-day mammals. Nature 456:274CrossRefGoogle Scholar
  5. Bryden MM, Erickson AW (1976) Body size and composition of crabeater seals (Lobodon carcinophagus), with observations on tissue and organ size in Ross seals (Ommatophoca rossi). J Zool 179:235–247CrossRefGoogle Scholar
  6. Buddington RK, Chen JW, Diamond JM (1991) Dietary regulation of intestinal brush-border sugar and amino acid transport in carnivores. Am J Physiol 261:R793–R801PubMedGoogle Scholar
  7. Chivers DJ, Hladik CM (1980) Morphology of the gastrointestinal tract in primates: comparisons with other mammals in relation to diet. J Morphol 166:337–386CrossRefPubMedGoogle Scholar
  8. Clauss M, Kleffner H, Kienzle E (2010) Carnivorous mammals: nutrient digestibility and energy evaluation. Zoo Biol 29:687–704CrossRefPubMedGoogle Scholar
  9. Davis DD (1962) Allometric relationships in lions vs. domestic cats. Evolution 16:505–514CrossRefGoogle Scholar
  10. Freckleton RP, Harvey PH, Pagel M (2002) Phylogenetic analysis and comparative data: a test and review of evidence. Am Nat 160:712–726CrossRefPubMedGoogle Scholar
  11. Iversen JA (1972) Basal energy metabolism of mustelids. J Comp Physiol B 81:341–344CrossRefGoogle Scholar
  12. Kenyon KW (1969) The sea otter in the eastern Pacific Ocean. US Fish and Wildlife Service No. 68, WashingtonGoogle Scholar
  13. King JE (1969) Some aspects of the anatomy of the Ross seal Ommatophoca rossi (Pinnipedia: Phocidae). Br Antarctic Sci Rep 63:1–54Google Scholar
  14. Kostanecki K (1926) Le caecum des vertébrés (y compris l’ “appendice vermiculaire”). Morphologie et signification fonctionnelle. Bulletin International de l’Académie Polonaise des Sciences et des Lettres, Classe des Sciences Methématiques et Naturelles Série B :1–295Google Scholar
  15. Lavin SR, Karasov WH, Ives AR, Middleton KM, Garland T (2008) Morphometrics of the avian small intestine compared with that of nonflying mammals: a phylogenetic approach. Physiol Biochem Zool 81:526–550CrossRefPubMedGoogle Scholar
  16. Lovegrove BG (2010) The allometry of rodent intestines. J Comp Physiol B 180:741–755CrossRefPubMedGoogle Scholar
  17. Mårtensson PE, Nordoy ES, Messelt EB, Blix AS (1998) Gut length, food transit time and diving habit in phocid seals. Polar Biol 20:213–217CrossRefGoogle Scholar
  18. McNab BK (2008) An analysis of the factors that influence the level and scaling of mammalian BMR. Comp Biochem Physiol A 151:5–28CrossRefGoogle Scholar
  19. Mitchell PC (1903–6) On the intestinal tract of mammals. Transactions of the Zoological Society of London 17:437–536Google Scholar
  20. Mitchell PC (1916) Further observations on the intestinal tract of mammals. Proc Zool Soc London 86:183–252CrossRefGoogle Scholar
  21. Navarrete A, van Schaik CP, Isler K (2011) Energetics and the evolution of human brain size. Nature 480:91–93CrossRefPubMedGoogle Scholar
  22. Okamoto M, Tanaka K, Tsunokawa M, Kasamatsu M, Yokota H, Tanida K, Kawasako K, Komine M, Akihara Y, Shimoyama Y, Hirayama K (2006) Small intestinal volvulus in a captive Steller sea lion (Eumetopias jubatus). Vet Rec 159:21CrossRefPubMedGoogle Scholar
  23. Orme D, Freckleton R, Thomas G, Petzoldt T, Fritz S, Isaac N (2010) Caper: comparative analyses of phylogenetics and evolution in R. R package version 04/r71 See http://caperrforgerproject.org/
  24. Orr RT (1976) Vertebrate biology. WB Saunders, PhiladelphiaGoogle Scholar
  25. Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877–884CrossRefPubMedGoogle Scholar
  26. Raven HC (1936) Notes on the anatomy of the viscera of the giant panda (Ailuropoda melanoleuca). Am Mus Novit 877:1–23Google Scholar
  27. Revell LJ (2010) Phylogenetic signal and linear regression on species data. Methods Ecol Evol 1:319–329CrossRefGoogle Scholar
  28. Richardson KC, Gales NJ (1987) Functional morphology of the alimentary tract of the Australian sea-lion Neophoca cinerea. Aust J Zool 35:219–226CrossRefGoogle Scholar
  29. Schiek JO, Millar JS (1985) Alimentary tract measurements as indicators of diets of small mammals. Mammalia 49:93–104Google Scholar
  30. Snipes RL, Snipes H (1997) Quantitative investigation of the intestine in eight species of domestic mammals. Mamm Biol 62:359–371Google Scholar
  31. Sparling CE, Fedak MA, Thompson D (2007) Eat now, pay later? Evidence of deferred food-processing costs in diving seals. Biol Lett 3:95–99CrossRefGoogle Scholar
  32. Stark R, Roper TJ, MacLarnon AM, Chivers DJ (1987) Gastrointestinal anatomy of the European badger Meles meles. A comparative study. Mamm Biol 52:88–96Google Scholar
  33. Stevens CE, Hume ID (1995) Comparative physiology of the vertebrate digestive system. Cambridge University Press, New YorkGoogle Scholar
  34. Team RDC (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria ISBN 3-900051-07-0, URL http://www.R-project.org/
  35. Williams TM, Haun J, Davis RW, Fuiman LA, Kohin S (2001) A killer appetite: metabolic consequences of carnivory in marine mammals. Comp Biochem Physiol A 129:785–796CrossRefGoogle Scholar
  36. Wilman H, Belmaker J, Simpson J, de la Rosa C, Rivadeneira MM, Jetz W (2014) Elton traits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95:2027CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Amanda McGrosky
    • 1
    • 2
  • Ana Navarrete
    • 3
  • Karin Isler
    • 1
  • Peter Langer
    • 4
  • Marcus Clauss
    • 5
    Email author
  1. 1.Anthropological Institute and MuseumUniversity of ZurichZurichSwitzerland
  2. 2.School of Human Evolution and Social ChangeArizona State UniversityTempeUSA
  3. 3.School of BiologyUniversity of St. AndrewsFifeUK
  4. 4.Institute of Anatomy and Cell BiologyJustus-Liebig-UniversityGiessenGermany
  5. 5.Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland

Personalised recommendations