Does regional landscape connectivity influence the location of roe deer roadkill hotspots?

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Linear infrastructures have both direct and indirect effects on ecosystems. Wildlife-vehicle collisions are the most visible direct effect and can result in severe human injuries. In Europe, the roe deer population is growing and roe deer roadkills are becoming more common. Roe deer movements depend on landscape features and regional-scale connectivity. Here, we investigate the influence of the landscape network on the location of roe deer roadkill hotspots. In order to localize new potential hotspots along the national roads of Franche-Comté (Eastern France), we first show that roe deer roadkills are not distributed randomly and we identify hotspots. Then, we explain roe deer hotspot locations using a predictive model by combining landscape composition variables, road-related properties, and graph-based connectivity metrics. We test three centrality metrics at three dispersal distances and we assess the relative contribution of the connectivity metrics to the best model. Finally, in order to define high-risk sections, we find the probability that reduces the costs of misclassification that the model produces. We validate the model with a new set of roe deer roadkills.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Addinsoft (2007) XLSTAT, data analysis and statistics with MS Excel

  2. Bodin Ö, Saura S (2010) Ranking individual habitat patches as connectivity providers: integrating network analysis and patch removal experiments. Ecol Model 221:2393–2405

    Article  Google Scholar 

  3. Bruinderink G, Hazebroek E (1996) Ungulate traffic collisions in Europe. Conserv Biol 10:1059–1067

    Article  Google Scholar 

  4. Bunn AG, Urban DL, Keitt TH (2000) Landscape connectivity: a conservation application of graph theory. J Environ Manag 59:265–278. doi:10.1006/jema.2000.0373

    Article  Google Scholar 

  5. Burnham K, Anderson D (2002) Model selection and multi-model inference: a practical information-theoretic approach. Springer, New York, Etats-Unis

    Google Scholar 

  6. Calabrese JM, Fagan WF (2004) A comparison-shopper’s guide to connectivity metrics. Front Ecol Environ 2:529–536. doi:10.1890/1540-9295(2004)002[0529:ACGTCM]2.0.CO;2

    Article  Google Scholar 

  7. Carroll C, McRae B, Brookes A (2012) Use of linkage mapping and centrality analysis across habitat gradients to conserve connectivity of gray wolf populations in western North America. Conserv Biol 26:78–87. doi:10.1111/j.1523-1739.2011.01753.x

    Article  PubMed  Google Scholar 

  8. Clauzel C, Girardet X, Foltête J-C (2013) Impact assessment of a high-speed railway line on species distribution: application to the European tree frog (Hyla arborea) in Franche-Comté. J Environ Manag 127C:125–134. doi:10.1016/j.jenvman.2013.04.018

    Article  Google Scholar 

  9. Clevenger AP, Chruszcz B, Gunson KE (2003) Spatial patterns and factors influencing small vertebrate fauna road-kill aggregations. Biol Conserv 109:15–26. doi:10.1016/S0006-3207(02)00127-1

    Article  Google Scholar 

  10. Coffin AW (2007) From roadkill to road ecology: a review of the ecological effects of roads. J Transp Geogr 15:396–406. doi:10.1016/j.jtrangeo.2006.11.006

    Article  Google Scholar 

  11. Coulon A, Cosson JF, Angibault J-M et al (2004) Landscape connectivity influences gene flow in a roe deer population inhabiting a fragmented landscape: an individual-based approach. Mol Ecol 13:2841–2850. doi:10.1111/j.1365-294X.2004.02253.x

    CAS  Article  PubMed  Google Scholar 

  12. Coulon A, Morellet N, Goulard M et al (2008) Inferring the effects of landscape structure on roe deer (Capreolus capreolus) movements using a step selection function. Landsc Ecol 23:603–614. doi:10.1007/s10980-008-9220-0

    Article  Google Scholar 

  13. Dale MRT, Fortin M-J (2010) From graphs to spatial graphs. Annu Rev Ecol Evol Syst 41:21–38. doi:10.1146/annurev-ecolsys-102209-144718

    Article  Google Scholar 

  14. Danks ZD, Porter WF (2010) Temporal, spatial, and landscape habitat characteristics of moose–vehicle collisions in Western Maine. J Wildl Manag 74:1229–1241. doi:10.2193/2008-358

    Google Scholar 

  15. Downs JA, Horner MW (2012) Enhancing habitat connectivity in fragmented landscapes: spatial modeling of wildlife crossing structures in transportation networks. Ann Assoc Am Geogr 102:17–34. doi:10.1080/00045608.2011.600190

    Article  Google Scholar 

  16. ESRI (2004) What is ArcGIS? (9.x version). ESRI Press, Redlands. CA, USA

  17. Fahrig L (1997) Relative effects of habitat loss and fragmentation on population extinction. J Wildl Manag 61:603–610

    Article  Google Scholar 

  18. Fall A, Fortin M-J, Manseau M, O’Brien D (2007) Spatial graphs: principles and applications for habitat connectivity. Ecosystems 10:448–461. doi:10.1007/s10021-007-9038-7

    Article  Google Scholar 

  19. Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49. doi:10.1017/S0376892997000088

    Article  Google Scholar 

  20. Foltête J-C, Clauzel C, Vuidel G (2012a) A software tool dedicated to the modelling of landscape networks. Environ Model Softw 38:316–327. doi:10.1016/j.envsoft.2012.07.002

    Article  Google Scholar 

  21. Foltête J-C, Clauzel C, Vuidel G, Tournant P (2012b) Integrating graph-based connectivity metrics into species distribution models. Landsc Ecol 27:557–569

    Article  Google Scholar 

  22. Forman RTT (1995) Land mosaics: the ecology of landscapes and regions. Cambridge University Press, Cambridge

    Google Scholar 

  23. Forman RTT (2000) Estimate of the area affected ecologically by the road system in the United States. Conserv Biol 14:31–35

    Article  Google Scholar 

  24. Forman RTT, Alexander LE (1998) Roads and their major ecological effects. Annu Rev Ecol Syst 29:207–231. doi:10.1146/annurev.ecolsys.29.1.207

    Article  Google Scholar 

  25. Fu W, Liu S, Degloria SD et al (2010) Characterizing the “fragmentation–barrier” effect of road networks on landscape connectivity: a case study in Xishuangbanna, Southwest China. Landsc Urban Plan 95:122–129. doi:10.1016/j.landurbplan.2009.12.009

    Article  Google Scholar 

  26. Gaillard J-M, Delorme D, Boutin J-M et al (1993) Roe deer survival patterns: a comparative analysis of contrasting populations. J Anim Ecol 62:778–791

    Article  Google Scholar 

  27. Galpern P, Manseau M, Fall A (2011) Patch-based graphs of landscape connectivity: a guide to construction, analysis and application for conservation. Biol Conserv 144:44–55. doi:10.1016/j.biocon.2010.09.002

    Article  Google Scholar 

  28. Girardet X, Foltête J-C, Clauzel C (2013) Designing a graph-based approach to landscape ecological assessment of linear infrastructures. Environ Impact Assess Rev 42:10–17. doi:10.1016/j.eiar.2013.03.004

    Article  Google Scholar 

  29. Grilo C, Ascensão F, Santos-Reis M, Bissonette JA (2011) Do well-connected landscapes promote road-related mortality? Eur J Wildl Res 57:707–716. doi:10.1007/s10344-010-0478-6

    Article  Google Scholar 

  30. Gunson KE, Mountrakis G, Quackenbush LJ (2011) Spatial wildlife-vehicle collision models: a review of current work and its application to transportation mitigation projects. J Environ Manag 92:1074–1082. doi:10.1016/j.jenvman.2010.11.027

    Article  Google Scholar 

  31. Gurrutxaga M, Lozano PJ, Del Barrio G (2010) Assessing highway permeability for the restoration of landscape connectivity between protected areas in the Basque Country, Northern Spain. Landsc Res 35:529–550. doi:10.1080/01426397.2010.504915

    Article  Google Scholar 

  32. Gurrutxaga M, Rubio L, Saura S (2011) Key connectors in protected forest area networks and the impact of highways: a transnational case study from the Cantabrian Range to the Western Alps (SW Europe). Landsc Urban Plan 101:310–320. doi:10.1016/j.landurbplan.2011.02.036

    Article  Google Scholar 

  33. Heikkinen RK, Luoto M, Virkkala R, Rainio K (2004) Effects of habitat cover, landscape structure and spatial variables on the abundance of birds in an agricultural-forest mosaic. J Appl Ecol 41:824–835. doi:10.1111/j.0021-8901.2004.00938.x

    Article  Google Scholar 

  34. Hewison AJ, Vincent JP, Joachim J et al (2001) The effects of woodland fragmentation and human activity on roe deer distribution in agricultural landscapes. Can J Zool 79:679–689. doi:10.1139/cjz-79-4-679

    Article  Google Scholar 

  35. Iuell B, Bekker G, Cuperus R et al (2003) Wildlife and traffic: an European handbook for identifying conflicts and designing solutions. KNNV, Bruxelles

    Google Scholar 

  36. Jackson SD (2000) Overview of transportation impacts on wildlife movement and populations. In: Wildlife and highways: seeking solutions to an ecological and socio-economic dilemma. The Wildlife Society. pp 7–20

  37. Jackson ND, Fahrig L (2011) Relative effects of road mortality and decreased connectivity on population genetic diversity. Biol Conserv 144:3143–3148. doi:10.1016/j.biocon.2011.09.010

    Article  Google Scholar 

  38. Jepsen J, Topping C (2004) Modelling roe deer (Capreolus capreolus) in a gradient of forest fragmentation: behavioural plasticity and choice of cover. Can J Zool 82:1528–1541. doi:10.1139/z04-131

    Article  Google Scholar 

  39. Kramer-Schadt S, Kaiser T, Frank K, Wiegand T (2011) Analyzing the effect of stepping stones on target patch colonisation in structured landscapes for Eurasian lynx. Landsc Ecol 26:501–513. doi:10.1007/s10980-011-9576-4

    Article  Google Scholar 

  40. Krisp J, Durot S (2007) Segmentation of lines based on point densities—an optimisation of wildlife warning sign placement in southern Finland. Accid Anal Prev 39:38–46. doi:10.1016/j.aap.2006.06.002

    Article  PubMed  Google Scholar 

  41. Madsen A, Strandgaard H, Prang A (2002) Factors causing traffic killings of roe deer Capreolus capreolus in Denmark. Wildl Biol 8:55–61

    Google Scholar 

  42. Malo J, Suárez F, Díez A (2004) Can we mitigate animal-vehicle accidents using predictive models? J Appl Ecol 41:701–710. doi:10.1111/j.0021-8901.2004.00929.x

    Article  Google Scholar 

  43. McRae B (2012) Centrality Mapper Connectivity Analysis Software. http://www.circuitscape.org/linkagemapper

  44. McRae B, Kavanagh D (2011) Linkage Mapper Connectivity Analysis Software. http://www.circuitscape.org/linkagemapper

  45. McRae B, Dickson BG, Keitt TH, Shah VB (2008) Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89:2712–2724. doi:10.1890/07-1861.1

    Article  PubMed  Google Scholar 

  46. Moilanen A (2011) On the limitations of graph-theoretic connectivity in spatial ecology and conservation. J Appl Ecol 48:1543–1547

    Article  Google Scholar 

  47. Morellet N, Moorter B, Cargnelutti B et al (2011) Landscape composition influences roe deer habitat selection at both home range and landscape scales. Landsc Ecol 26:999–1010. doi:10.1007/s10980-011-9624-0

    Article  Google Scholar 

  48. Okabe A, Yamada I (2001) The K-function method on a network and its computational implementation. Geogr Anal 33:271–290. doi:10.1111/j.1538-4632.2001.tb00448.x

    Article  Google Scholar 

  49. Okabe A, Okunuki K, Shiode S (2006) SANET: a toolbox for spatial analysis on a network. Geogr Anal 38:57–66. doi:10.1111/j.0016-7363.2005.00674.x

    Article  Google Scholar 

  50. Pinto N, Keitt TH (2009) Beyond the least-cost path: evaluating corridor redundancy using a graph-theoretic approach. Landsc Ecol 24:253–266. doi:10.1007/s10980-008-9303-y

    Article  Google Scholar 

  51. Putmam R (1997) Deer and road traffic accidents: options for management. J Environ Manag 51:43–57

    Article  Google Scholar 

  52. Ramp D, Caldwell J, Edwards KA et al (2005) Modelling of wildlife fatality hotspots along the snowy mountain highway in New South Wales, Australia. Biol Conserv 126:474–490. doi:10.1016/j.biocon.2005.07.001

    Article  Google Scholar 

  53. Rayfield B, Fortin M-J, Fall A (2011) Connectivity for conservation: a framework to classify network measures. Ecology 92:847–858. doi:10.1890/09-2190.1

    Article  PubMed  Google Scholar 

  54. Ripley B (1976) The second-order analysis of stationary point processes. J Appl Probab 13:255–266

    Article  Google Scholar 

  55. Roger E, Bino G, Ramp D (2012) Linking habitat suitability and road mortalities across geographic ranges. Landsc Ecol 27:1167–1181. doi:10.1007/s10980-012-9769-5

    Article  Google Scholar 

  56. Rudnick D, Ryan S, Beier P (2012) The role of landscape connectivity in planning and implementing conservation and restoration priorities. Issues in Ecology. Report No. 16. Washington, DC.

  57. Rutledge D (2003) Landscape indices as measures of the effects of fragmentation: can pattern reflect process. Doc Sci Intern Ser 98:5–27

    Google Scholar 

  58. Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation: a review. Conserv Biol 5:18–32

    Article  Google Scholar 

  59. Saura S, Pascual-Hortal L (2007) A new habitat availability index to integrate connectivity in landscape conservation planning: comparison with existing indices and application to a case study. Landsc Urban Plan 83:91–103. doi:10.1016/j.landurbplan.2007.03.005

    Article  Google Scholar 

  60. Taylor PD, Fahrig L, Henein K, Merriam G (1993) Connectivity is a vital element of landscape structure. Oikos 68:571–573

    Article  Google Scholar 

  61. Urban DL, Keitt TH (2001) Landscape connectivity: a graph theoretic approach. Ecology 82:1205–1218. doi:10.1890/0012-9658(2001)082[1205:LCAGTP]2.0.CO;2

    Article  Google Scholar 

  62. Urban DL, Minor ES, Treml EA, Schick RS (2009) Graph models of habitat mosaics. Ecol Lett 12:260–273. doi:10.1111/j.1461-0248.2008.01271.x

    Article  PubMed  Google Scholar 

  63. Venables WN, Ripley BD (2002) Modern applied statistics with S, fourth. Springer, New York

    Google Scholar 

  64. Vogt P, Riitters KH, Estreguil C et al (2007) Mapping spatial patterns with morphological image processing. Landsc Ecol 22:171–177. doi:10.1007/s10980-006-9013-2

    Article  Google Scholar 

  65. Zimmermann F, Breitenmoser U (2007) Potential distribution and population size of the Eurasian lynx Lynx lynx in the Jura Mountains and possible corridors to adjacent ranges. Wildl Biol 13:406–416. doi:10.2981/0909-6396(2007)13[406:PDAPSO]2.0.CO;2

    Article  Google Scholar 

Download references

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xavier Girardet.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Girardet, X., Conruyt-Rogeon, G. & Foltête, J. Does regional landscape connectivity influence the location of roe deer roadkill hotspots?. Eur J Wildl Res 61, 731–742 (2015). https://doi.org/10.1007/s10344-015-0950-4

Download citation

Keywords

  • Wildlife-vehicle collisions
  • Connectivity
  • Landscape graph
  • Circuit theory
  • Capreolus capreolus