Advertisement

European Journal of Wildlife Research

, Volume 61, Issue 5, pp 691–701 | Cite as

Genetic structure and diversity of breeding Montagu’s harrier (Circus pygargus) in Europe

  • R. RutkowskiEmail author
  • D. Krupiński
  • I. Kitowski
  • D. Popović
  • A. Gryczyńska
  • M. Molak
  • B. Dulisz
  • K. Poprach
  • S. Müller
  • R. Müller
  • K-D. Gierach
Original Paper

Abstract

The Montagu’s harrier (Circus pygargus) is a long-distance migratory raptor, breeding in Europe and Western Asia and wintering in sub-Saharan Africa. The population of the species has declined in Europe during the twentieth century, and Montagu’s harrier is red-listed in many European countries as declining or threatened. The main aims of the study were to evaluate the genetic diversity of European breeding populations and estimate the genetic differentiation among them, using polymorphism in the hypervariable domain of the mitochondrial control region. We analysed 158 individuals from central Spain, Germany, the Czech Republic and Poland. The results indicated high genetic diversity in the European breeding population, probably reflecting the large population size of the species. However, we found decreased genetic variability in the breeding population of Germany. Among the 18 identified haplotypes, 2 were of high frequency. There was no clear connection between the position of the haplotype in the genealogy and its geographical distribution. Genetic structure was weakly pronounced (H ST = 0.053, P < 0.001). SAMOVA indicated the presence of three genetic groups: The first group consisted of samples from central Spain and northeastern Poland, the second from southern Poland and the Czech Republic, and the third group separated samples from Germany from the other regions. Genetic differentiation between pairs of groups was low, suggesting a low level of philopatry and a high dispersal ability of Montagu’s harrier.

Keywords

Montagu’s harrier Circus pygargus Accipitride Control region mtDNA Population genetics 

Notes

Acknowledgments

This study was financed by the National Science Centre (grant nr N N304 157839). We are grateful to Piotr Zabłocki, Michał Wolny for providing samples from southern Poland, and Raul Alonso Moreno (BRINZAL), Manuel Galan Crespo (GREFA) and Miguel Angel Hernandez for collecting samples in Spain. Ewa Suchecka was extremely helpful in laboratory work. We are grateful to Dr. Frank Hailer and another anonymous reviewer for valuable comments on the manuscript.

Supplementary material

10344_2015_943_MOESM1_ESM.docx (38 kb)
ESM 1 (DOCX 37 kb)

References

  1. Agostini N, Logozzo D (1997) Autumn migration of accipitriformes through Italy en route to Africa. Avocetta 21:174–179Google Scholar
  2. Allentoft ME, O’Brien J (2010) Global amphibian declines, loss of genetic diversity and fitness: a review. Diversity 2:47–71CrossRefGoogle Scholar
  3. Arroyo B, García JT, Bretagnolle V (2002) Conservation of Montagu’s harrier (Circus pygargus) in agricultural areas. Anim Conserv 5:283–290CrossRefGoogle Scholar
  4. Asai S, Akoshima D, Yamamoto Y, Shigeta Y, Matsue M, Momose H (2008) Current status of the northern goshawk accipiter Gentilis in Japan based on mitochondrial DNA. Ornithol Sci 7:143–156CrossRefGoogle Scholar
  5. Avise JC, Aquadro CF (1982) A compariative study of genetic distances in the vertebrates, patterns and correlations. In: Hecht MK, Wallace B, Prance GT (eds) Evolutionary biology vol. 15. Plenum Press, New York, pp 151–185CrossRefGoogle Scholar
  6. Baele G, Lemey P, Bedford T, Rambaut A, Suchard MA, Alekseyenko AV (2012) Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. Mol Biol Evol 29:2157–2167PubMedCentralCrossRefPubMedGoogle Scholar
  7. Baele G, Li WLS, Drummond AJ, Suchard MA, Lemey P (2013) Accurate model selection of relaxed molecular clocks in Bayesian phylogenetics. Mol Biol Evol 30:239–243PubMedCentralCrossRefPubMedGoogle Scholar
  8. Baker AJ, Marshall HD (1997) Mitochondrial control region sequences as tools for understanding evolution. In: Mindell DP (ed) Avian molecular evolution and systematics. Academic, San DiegoGoogle Scholar
  9. Bandelt H-J, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48CrossRefPubMedGoogle Scholar
  10. Barrowclough GF (1983) Biochemical studies of microevolutionary processes. In: Brush AH, Clark GA Jr (eds) Perspectives in ornithology. University of Cambridge Press, Cambridge, pp 223–261CrossRefGoogle Scholar
  11. Bazin E, Glémin S, Galtier N (2006) Population size does not influence mitochondria genetic diversity in animals. Science 312(5773):570–2. doi: 10.1126/science.1122033 CrossRefPubMedGoogle Scholar
  12. Bourke BP, Frantz AC, Lavers CP, Davison A, Dawson DA, Burke TA (2010) Genetic signatures of population change in the British golden eagle (Aquila chrysaetos). Conserv Genet 11:1837–1846. doi: 10.1007/s10592-010-0076-x CrossRefGoogle Scholar
  13. Cadahía L, Negro JJ, Urios V (2007) Low mitochondrial DNA diversity in the endangered Bonelli’s eagle (Hieraaetus fasciatus) from SW Europe (Iberia) and NW Africa. J Ornithol 148:99–104CrossRefGoogle Scholar
  14. Caizergues A, Rätti O, Helle P, Rotelli L, Ellison L, Rasplus J-Y (2003) Population genetic structure of male black grouse (Tetrao tetrix L.) in fragmented vs. continuous landscapes. Mol Ecol 12:2297–2305CrossRefPubMedGoogle Scholar
  15. Clarke R (1996) Montagu’s harrier. Arlequin, ChelmsfordGoogle Scholar
  16. Cramp S, Simmons KEL (1980) The birds of the western paleartic, vol 2. Oxford University Press, OxfordGoogle Scholar
  17. Crochet P-A (2000) Genetic structure of avian populations: allozymes revisited. Mol Ecol 9:1463–1469CrossRefPubMedGoogle Scholar
  18. Crozier RH (1997) Preserving the information content of species: genetic diversity, phylogeny, and conservation worth. Annu Rev Ecol Syst 28:243–268CrossRefGoogle Scholar
  19. de Volo SB, Reynolds RT, Sonsthagen SA, Talbot SL, Antolin MF (2013) Phylogeography, postglacial gene flow, and population history of North American northern goshawks (Accipiter Gentilis). Auk 130:342–354. doi: 10.1525/auk.2013.12120 CrossRefGoogle Scholar
  20. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973PubMedCentralCrossRefPubMedGoogle Scholar
  21. Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11:2571–81CrossRefPubMedGoogle Scholar
  22. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under linux and windows. Mol Ecol Resour 10:564–567. doi: 10.1111/j.1755-0998.2010.02847.x CrossRefPubMedGoogle Scholar
  23. Fluxus Technology Ltd.: http://www.fluxus-engineering.com
  24. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925PubMedCentralPubMedGoogle Scholar
  25. Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709PubMedCentralPubMedGoogle Scholar
  26. Fuchs J, Simmons RE, Mindell DP, Bowie RCK, Oatley G (2014) Lack of mtDNA genetic diversity in the black harrier Circus maurus, a southern African endemic. Ibis 156:227–230. doi: 10.1111/ibi.12103 CrossRefGoogle Scholar
  27. Gaggiotti OE, Bekkevold D, Jørgensen HBH, Foll M, Carvalho GR, Andre C, Ruzzante DE (2009) Disentangling the effects of evolutionary, demographic, and environmental factors influencing genetic structure of natural populations: Atlantic herring as a case study. Evolution 63:2939–2951. doi: 10.1111/j.1558-5646.2009.00779.x CrossRefPubMedGoogle Scholar
  28. García JT, Arroyo BE (1998) Migratory movements of Montagu’s harriers circus pygargus: a review. Bird Study 45:188–194CrossRefGoogle Scholar
  29. García JT, Alda F, Terraube J, Mougeot F, Sternalski A, Bretagnolle V, Arroyo B (2011) Demographic history, genetic structure and gene flow in a steppe-associated raptor species. BMC Evol Biol 11:333. doi: 10.1186/1471-2148-11-333 PubMedCentralCrossRefPubMedGoogle Scholar
  30. García CB, Gil JA, Alcántara M, González J, Cortés MR, Bonafonte JI, Arruga MV (2012) The present Pyrenean population of bearded vulture (Gypaetus barbatus): its genetic characteristics. J Biosci 37:689–694CrossRefPubMedGoogle Scholar
  31. Godoy JA, Negro JJ, Hiraldo F, Donázar JA (2004) Phylogeography, genetic structure and diversity in the endangered bearded vulture (gypaetus barbatus, L) as revealed by mitochondrial DNA. Mol Ecol 13(2):371–390. doi: 10.1046/j.1365-294X.2003.02075.x CrossRefPubMedGoogle Scholar
  32. Greenwood PJ, Harvey PH (1982) The natal and breeding dispersal of birds. Annu Rev Ecol Syst 45:188–194Google Scholar
  33. Hailer F, Helander B, Folkestad AO, Ganusevich SA, Garstad S, Hauff P, Koren C, Masterov VB, Nygard T, Rudnick JA, Shiraki S, Skarphedinsson K, Volke V, Villa F, Vila C (2007) Phylogeography of white-tailed eagle, a generalist with a large dispersal capacity. J Biogeogr 34(7):1193–1206. doi: 10.1111/j.1365-2699.2007.01697.x CrossRefGoogle Scholar
  34. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  35. Hammer R, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):9, http://palaeo-electronica.org/2001_1/past/issue1_01.htm Google Scholar
  36. Hewitt GM (2004) Genetic consequences of climatic oscillations in the quaternary. Philos Trans R Soc Lond B 359:183–195CrossRefGoogle Scholar
  37. Honnen A-C, Hailer F, Kenntner N, Literák I, Dubská L, Zachos FE (2010) Mitochondrial DNA and nuclear microsatellites reveal high diversity and genetic structure in an avian top predator, the white-tailed sea eagle, in central Europe. Biol J Linn Soc 99:727–737CrossRefGoogle Scholar
  38. Hudson RR, Boos DD, Kaplan NL (1992) A statistical test for detecting geographic subdivision. Mol Biol Evol 9:138–151PubMedGoogle Scholar
  39. Hull JM, Girman DJ (2005) Effects of Holocene climate change on the historical demography of migrating sharp-shinned hawks (accipiter striatus velox) in North America. Mol Ecol 14(1):159–170. doi: 10.1111/j.1365-294X.2004.02366.x CrossRefPubMedGoogle Scholar
  40. Hull JM, Anderson R, Bradbury M, Estep JA, Ernest HB (2008a) Population structure and genetic diversity in Swainson’s hawks (buteo swainsoni): implications for conservation. Conserv Genet 9:305–316. doi: 10.1007/s10592-007-9342-y CrossRefGoogle Scholar
  41. Hull JM, Hull AC, Sacks BN, Smith JP, Ernest HB (2008b) Landscape characteristics influence morphological and genetic differentiation in a widespread raptor (buteo jamaicensis). Mol Ecol 17(3):810–824. doi: 10.1111/j.1365-294X.2007.03632.x CrossRefPubMedGoogle Scholar
  42. Jackson H, Morgan BJT, Groombridge JJ (2013) How closely do measures of mitochondrial DNA control region diversity reflect recent trajectories of population decline in birds? Conserv Genet 14:1291–1296CrossRefGoogle Scholar
  43. Keane TM, Creevey CJ, Pentony MM, Naughton TJ, McLnerney JO (2006) Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evol Biol 6:29. doi: 10.1186/1471-2148-6-29 PubMedCentralCrossRefPubMedGoogle Scholar
  44. Kimura M (1980) A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefPubMedGoogle Scholar
  45. Kraus RH, van Hooft P, Megens HJ, Tsvey A, Fokin SY, Ydenberg RC, Prins HH (2013) Global lack of flyway structure in a cosmopolitan bird revealed by a genome wide survey of single nucleotide polymorphisms. Mol Ecol 22(1):41–55. doi: 10.1111/mec.12098 CrossRefPubMedGoogle Scholar
  46. Kretzmann MB, Capote N, Gautschi B, Godoy JA, Donázar JA, Negro JJ (2003) Genetically distinct island populations of the Egyptian vulture (neophron percnopterus). Conserv Genet 4:697–706CrossRefGoogle Scholar
  47. Krogulec J (1997) Montagu’s harrier Circus pygargus. In: Hagemeijer WJM, Blair MJ (eds) The EBCC Atlas of European breeding birds: their distribution and abundance. T & AD Poyser, London, pp 150–151Google Scholar
  48. Krupiński D, Lewak J, Rzępoła M, Szulak K (2012) Breeding biology of the Montagu’s harrier (circus pygargus) in east-central Poland and implications for its conservation. Zool Ecol 22:86–92CrossRefGoogle Scholar
  49. Kuczyński L, Krupiński D (2014) National qualification of Montagu’s harrier. Annu Rep. Towarzystwo Przyrodnicze “Bocian”, Poznań-Warszawa, pp 1–46. [In Polish with English summary]Google Scholar
  50. Langguth T, Honnen A-C, Hailer F, Mizera T, Skoric S, Väli Ü, Zachos FE (2013) Genetic structure and phylogeography of a European flagship species, the white-tailed sea eagle Haliaeetus albicilla. J Avian Biol 44:263–271CrossRefGoogle Scholar
  51. Lee PLM, Bradbury RB, Wilson JD, Flanagan NS, Richardson L, Perkins AJ, Krebs JR (2001) Microsatellite variation in the yellowhammer Embrezia citrinella: population structure of declining farmland bird. Mol Ecol 10:1633–1644. doi: 10.1046/j.1365-294X.2001.01305.x CrossRefPubMedGoogle Scholar
  52. Leffler EM, Bullaughey K, Matute DR, Meyer WK, Ségurel L et al (2012) Revisiting an old riddle: what determines genetic diversity levels within species? PLoS Biol 10(9), e1001388PubMedCentralCrossRefPubMedGoogle Scholar
  53. Lerner HRL, Johnson JA, Lindsay AR, Kiff LF, Mindell DP (2009) It’s not too late for the harpy eagle (Harpia harpyja): high levels of genetic diversity and differentiation can fuel conservation programs. PLoS ONE 4(10), e7336. doi: 10.1371/journal.pone.0007336 PubMedCentralCrossRefPubMedGoogle Scholar
  54. Librado P, Rozas J (2009) DNASP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452CrossRefPubMedGoogle Scholar
  55. Limiñana R, García JT, González JM, Guerrero A, Lavedán J, Moreno JD, Román-Muñoz A, Palomares LE, Pinilla A, Ros G, Serrano C, Surroca M, Tena J, Arroyo B (2012) Philopatry and natal dispersal of montagu’s harriers (circus pygargus) breeding in Spain: a review of existing data. Eur J Wildl Res 58(3):549–555. doi: 10.1007/s10344-011-0602-2 CrossRefGoogle Scholar
  56. Liu Y, Keller I, Heckel G (2012) Breeding site fidelity and winter admixture in a long-distance migrant, the tufted duck (Aythya fuligula). Hered (Edinb) 109(2):108–16. doi: 10.1038/hdy.2012.19 CrossRefGoogle Scholar
  57. Martínez-Cruz B, Godoy JA, Negro JJ (2004) Population genetics after fragmentation: the case of the endangered Spanish imperial eagle (Aquila adalberti). Mol Ecol 13:2243–2255. doi: 10.1111/j.1365-294X.2004.02220.x CrossRefPubMedGoogle Scholar
  58. Mira S, Arnaud-Haond S, Palma L, Cancela ML, Beja P (2013) Large-scale population genetic structure in Bonelli’s eagle Aquila fasciata. Ibis 155:485–498. doi: 10.1111/ibi.12065 CrossRefGoogle Scholar
  59. Mrlík VJ, Hruška K, Poprach O, Suchý JV, Závalský O (2002) Breeding distribution, population size, dynamics, ecology and protection of Montagu’s harrier circus pygargus in the Czech Republic. Ornithol Anz 41:175–182Google Scholar
  60. Mundy NI, Winchell CS, Woodruff DS (1997) Genetic differences between the endangered San Clemente island loggerhead shrike lanius ludovicianus mearnsi and two neighboring subspecies demonstrated by mtDNA control region and cytochrome b sequence variation. Mol Ecol 6(1):29–37CrossRefPubMedGoogle Scholar
  61. Newton I (2003) The speciation and biogeography of birds. Academic Press, San Diego. C.AGoogle Scholar
  62. Oatley G, Simmons RE, Fuchs J (2015) A molecular phylogeny of the harriers (Circus, accipitridae) indicate the role of long distance dispersal and migration in diversification. Mol Phylogenet Evol 85:150–160CrossRefPubMedGoogle Scholar
  63. Petit RJ, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855CrossRefGoogle Scholar
  64. Ponnikas S, Kvist L, Ollila T, Stjernberg T, Orell M (2013) Genetic structure of an endangered raptor at individual and population levels. Conserv Genet 14:1135–1147CrossRefGoogle Scholar
  65. Poulakakis N, Antoniou A, Mantziou G, Parmakelis A, Skartsi T, Vasilakis D et al (2008) Population structure, diversity, and phylogeography in the near-threatened Eurasian black vultures Aegypius monachus (Falconiformes; Accipitridae) in Europe: insights from microsatellite and mitochondrial DNA variation. Biol J Linn Soc 95:859–872. doi: 10.1111/j.1095-8312.2008.01099.x CrossRefGoogle Scholar
  66. Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237. doi: 10.1046/j.1523-1739.2003.01236.x CrossRefGoogle Scholar
  67. Rhodes OE Jr, Smith LM, Chesser RK (1993) Temporal components of genetic variation in migrating and wintering American wigeon. Can J Zool 71:2229–2235CrossRefGoogle Scholar
  68. Roques S, Negro JJ (2005) MtDNA genetic diversity and population history of a dwindling raptorial bird, the red kite (milvus milvus). Biol Conserv 126:41–50. doi: 10.1016/j.biocon.2005.04.020 CrossRefGoogle Scholar
  69. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386PubMedGoogle Scholar
  70. Ruokonen M, Kvist L (2002) Structure and evolution of the avian mitochondrial control region. Mol Phylogenet Evol 23:422–432. doi: 10.1016/S1055-7903(02)00021-0 CrossRefPubMedGoogle Scholar
  71. Rutkowski R, Rejt L, Tereba A, Gryczyńska-Siemiątkowska A, Janic B (2010) Population genetic structure of the European kestrel Falco tinnunculus in Central Poland. Eur J Wildl Res 56:297–305. doi: 10.1007/s10344-009-0320-1 CrossRefGoogle Scholar
  72. Rutkowski R, Keller M, Jagołkowska P (2012) Population genetics of the hazel hen Bonasa bonasia in Poland assessed with non-invasive samples. Cent Eur J Biol 7:759–775Google Scholar
  73. Rutkowski R, Krupiński D, Kitowski I, Gryczyńska A (2014) Preliminary analysis of genetic variability in Montagu’s harrier (Circus pygargus) using cross-amplified microsatellites. Ann Zool 64:535–547CrossRefGoogle Scholar
  74. Sonsthagen SA, Talbot SA, White CM (2004) Gene flow and genetic characterization of northern goshawk breeding in Utah. Condor 106:826–836. doi: 10.1650/7448 CrossRefGoogle Scholar
  75. Sonsthagen SA, Rosenfield RN, Bielefeldt J, Murphy RK, Stewart AC, Stout WE, Driscoll TG, Bozek MA, Sloss BL, Talbot SL (2012) Genetic and morphological divergence among Cooper’s hawk (accipiter cooperii) populations breeding in north-central and western North America. Auk 129:427–437. doi: 10.1525/auk.2012.11166 CrossRefGoogle Scholar
  76. Spielman D, Brook BW, Frankham R (2004) Most species are not driven to extinction before genetic factors impact them. PNAS 101:15261–15264PubMedCentralCrossRefPubMedGoogle Scholar
  77. Taberlet P, Fumagalli L, Wust-Saucy AG, Cosson JF (1998) Comparative phylogeography and postglacial colonisation router in Europe. Mol Ecol 7:453–464CrossRefPubMedGoogle Scholar
  78. Tajima F (1989) Statistical method for testing the neutral mutational hypothesis by DNA polymorphism. Genetics 123:585–595PubMedCentralPubMedGoogle Scholar
  79. Takaki Y, Kawahara T, Kitamura H, Endo K, Kudo T (2009) Genetic diversity and genetic structure of northern goshawk (accipiter Gentilis) populations in eastern Japan and Central Asia. Conserv Genet 10:269–279CrossRefGoogle Scholar
  80. Tomiałojć L, Stawarczyk T (2003) The avifauna of Poland. Distribution, numbers and trends. PTPP “pro Natura”, Wrocław, pp 870.Google Scholar
  81. Trierweiler C, Koks B, Bairlein F, Exo KM, Komdeur J, Dijkstra C (2006) Migratory routes and wintering behavior of NW-european Montagu’s harriers revealed by satellite telemetry. J Ornithol 147:265Google Scholar
  82. Trierweiler C, Klaassen RHG, Drent RH, Exo K-M, Komdeur J, Bairlein F, Koks BJ (2014) Migratory connectivity and population-specific migration routes in a long-distance migratory bird. Proc R Soc B Biol Sci 281:20132897. doi: 10.1098/rspb.2013.2897 CrossRefGoogle Scholar
  83. Wenink PW, Baker AJ, Rösner H, Tilanus MGJ (1996) Global mitochondrial DNA phylogeography of holarctic breeding dunlins (Calidris alpina). Evolution 50:318–330CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • R. Rutkowski
    • 1
    Email author
  • D. Krupiński
    • 2
  • I. Kitowski
    • 3
  • D. Popović
    • 4
  • A. Gryczyńska
    • 5
  • M. Molak
    • 1
  • B. Dulisz
    • 6
  • K. Poprach
    • 7
  • S. Müller
    • 8
  • R. Müller
    • 8
  • K-D. Gierach
    • 8
  1. 1.Polish Academy of SciencesMuseum and Institute of ZoologyWarsawPoland
  2. 2.Wildlife Society ‘Stork’, Warszawa and Polish Montagu’s Harrier Working Group PygargusWarszawaPoland
  3. 3.State School of Higher Education in ChełmChełmPoland
  4. 4.Centre of New TechnologiesUniversity of WarsawWarsawPoland
  5. 5.Faculty of Biology, Biological and Chemical Research CentreUniversity of WarsawWarsawPoland
  6. 6.Faculty of Biology and BiotechnologyUniversity of Warmia and Mazury in OlsztynOlsztynPoland
  7. 7.TYTO o.s.VěrovanyCzech Republic
  8. 8.Arbeitsgruppe Wiesenweihenschutz Brandenburg Seestr. 5ChorinGermany

Personalised recommendations