European Journal of Wildlife Research

, Volume 60, Issue 6, pp 909–917 | Cite as

Roe deer population structure in a highly fragmented landscape

Original Paper

Abstract

Northern Belgium (Flanders) is one of the most densely populated and urbanized regions in Europe. Many species are therefore likely to suffer from anthropogenic pressure and habitat destruction and fragmentation. Although many large mammals are recolonizing in parts of Europe, including Belgium, due to adaptation, a relaxation of persecution and habitat restoration, we have little actual data concerning the effects of landscape features on their population structure. We analysed the genetic structure of discrete roe deer (Capreolus capreolus) populations in the Eastern part of Flanders, with special emphasis on the impact of habitat fragmentation and anthropogenic barriers. The sampled populations were clearly genetically differentiated. Genetic structure could be explained by purely distance-based landscape modelling, but a simpler model focusing solely on barrier effects of large transportation infrastructure explained nearly as much genetic variance. In contrast, analyses based on least-cost landscape modelling failed to yield a significant effect. Overall, the results suggest considerable landscape-level effects of transportation infrastructure.

Keywords

Capreolus capreolus Fragmentation Genetic drift Redundancy analysis Landscape genetics 

Supplementary material

10344_2014_859_MOESM1_ESM.pdf (208 kb)
ESM 1(PDF 207 kb)
10344_2014_859_MOESM2_ESM.pdf (88 kb)
ESM 2(PDF 87 kb)
10344_2014_859_MOESM3_ESM.pdf (186 kb)
ESM 3(PDF 185 kb)
10344_2014_859_MOESM4_ESM.pdf (174 kb)
ESM 4(PDF 174 kb)

References

  1. Andren H (1994) Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 71:355–366CrossRefGoogle Scholar
  2. Antrop M (2004) Landscape change and the urbanization process in Europe. Landsc Urban Plan 67:9–26CrossRefGoogle Scholar
  3. Balkenhol N, Waits L (2009) Molecular road ecology: Exploring the potential of genetics for investigating transportation impacts on wildlife. Mol Ecol 18:4151–4164PubMedCrossRefGoogle Scholar
  4. Belkhir K (2004) Genetix 4.05.2. Laboratoire Génome et Populations, University of Montpellier II, MontpellierGoogle Scholar
  5. Blanchet FGP, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632PubMedCrossRefGoogle Scholar
  6. Bright PW (1993) Habitat fragmentations; problems and predictions for British mammals. Mammal Rev 23:101–111CrossRefGoogle Scholar
  7. Cargnelutti B, Reby D, Desneux L, Angibault JM, Joachim J, Hewison AJM (2002) Space use by roe deer in a fragmented landscape. Some preliminary results. Rev Ecol (Terre Vie) 57:29–37Google Scholar
  8. Casaer J (2003) Analysing roe deer habitat selection; methodological problems and possible solutions. Dissertationes de agricultura, 550. Faculteit van de Landbouwkundige en Toegepaste Biologische Wetenschappen: Belgium. 197 ppGoogle Scholar
  9. Casaer J, Licoppe A (2010) Ungulates and their management in Belgium, in: Apollonio, M. et al. (Ed.) (2010). European ungulates and their management in the 21st century. pp. 184–200Google Scholar
  10. Coulon A, Cosson JF, Angibault JM, Cargnelutti B, Galan M, Morellet N, Petit E, Aulagnier S, Hewison AJM (2004) Landscape connectivity influences gene flow in a roe deer population inhabiting a fragmented landscape: an individual-based approach. Mol Ecol 13:2841–2850PubMedCrossRefGoogle Scholar
  11. Coulon A, Guillot G, Cosson JF, Angibault JMA, Aulagnier S, Cargnelutti B, Galan M, Hewison AJM (2006) Genetic structure is influenced by landscape features: Empirical evidence from a roe deer population. Mol Ecol 15:1669–1679PubMedCrossRefGoogle Scholar
  12. Crawford N (2010) SMOGD: software for the measurement of genetic diversity. Mol Ecol Res 10:556–557CrossRefGoogle Scholar
  13. Deinet S, Ieronymidou C, McRae L, Burfield IJ, Foppen RP, Collen B, Böhm M (2013) Wildlife comeback inEurope: The recovery of selected mammal and bird species. Final report to Rewilding Europe by ZSL, BirdLife International and the European Bird Census Council. London, UK: ZSLGoogle Scholar
  14. Dellicour S, Frantz AC, Colyn M, Bertouille S, Chaumont F, Flamand MC (2011) Population structure and genetic diversity of red deer (Cervus elaphus) in forest fragments in north-western France. Conserv Genet 12:1287–1297CrossRefGoogle Scholar
  15. Dray S, Legendre P, Peres-Neto PR (2006) Spatial modeling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol Model 196:483–493CrossRefGoogle Scholar
  16. Earl D, von Holdt B (2011) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  17. Epps CW, Palsboll PJ, Wehausen JD, Roderick GK, Ramey RR, McCullough DR (2005) Highways block gene flow and cause a rapid decline in genetic diversity of desert bighorn sheep. Ecol Lett 8:1029–1038CrossRefGoogle Scholar
  18. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  19. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515CrossRefGoogle Scholar
  20. Falush D, Stephens M, Pritchard J (2003) Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedCentralPubMedGoogle Scholar
  21. Frantz A, Bertouille S, Eloy M, Licoppe A, Chaumont F, Flamand M (2012) Comparative landscape genetic analyses show a Belgian motorway to be a gene flow barrier for red deer (Cervus elaphus), but not wild boars (Sus scrofa). Mol Ecol 21:3445–3457PubMedCrossRefGoogle Scholar
  22. Galan M, Cosson JF, Aulagnier S, Maillard JC, Thevenon S, Hewison AJM (2003) Cross-amplification tests of ungulate primers in roe deer (Capreolus capreolus) to develop a multiplex panel of 12 microsatellite loci. Mol Ecol Not 3:142–146CrossRefGoogle Scholar
  23. Gilbert B, Bennett JR (2010) Partitioning variation in ecological communities: do the numbers add up? J Appl Ecol 47:1071–1082CrossRefGoogle Scholar
  24. Gobin A, Uljee I, Van Esch L, Engelen G, de Kok JL, Hens M, Van Daele T, Peymen J, Van Reeth W, Overloop S, Maes D (2009) Landgebruik in Vlaanderen : wetenschappelijk rapport - MIRA 2009 en NARA 2009. Rapporten van het Instituut voor Natuur- en Bosonderzoek, 2009(20). INBO: Brussel. ISBN 1782–9054. 328 ppGoogle Scholar
  25. Goudet J (2001) FSTAT, A program to estimate and test gene diversities and fixation indices (version 2.9.3). Available from www.unil.ch/izea/softwares/fstat.html
  26. Haanes H, Roed KH, Perez-Espona S, Rosef O (2011) Low genetic variation support bottlenecks in Scandinavian red deer. Eur J Wildl Res 57:1137–1150CrossRefGoogle Scholar
  27. Hanski I (1998) Connecting the parameters of local extinction and metapopulation dynamics. Oikos 83:390–396CrossRefGoogle Scholar
  28. Hepenstrick D, Thiel D, Holderegger R, Gugerli F (2012) Genetic discontinuities in roe deer (Capreolus capreolus) coincide with fenced transportation infrastructure. Basic Appl Ecol 13:631–638CrossRefGoogle Scholar
  29. Hewison AJM, Vincent JP, Joachim J, Angibault JM, Cargnelutti B, Cibien C (2001) The effects of woodland fragmentation and human activity on roe deer distribution in agricultural landscapes. Can J Zool 79:679–689CrossRefGoogle Scholar
  30. Holderegger R, Wagner H (2008) Landscape genetics. Bioscience 58:199–207CrossRefGoogle Scholar
  31. Jaeger JAG, Madrinan LF, Soukup T, Schwick C, Kienast F (2011) Landscape Fragmentation in Europe. Joint EEA-FOEN report. Pp 87Google Scholar
  32. Jongman RHG (2002) Homogenisation and fragmentation of the European Landscape; ecological consequences and solutions. Landsc Urban Plan 58:211–221CrossRefGoogle Scholar
  33. Jost L (2008) G ST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026PubMedCrossRefGoogle Scholar
  34. Kuehn R, Schroeder W, Pirchner F, Rottmann O (2003) Genetic diversity, gene flow and drift in Bavarian red deer population (Cervus elaphus). Conserv Genet 4:157–166CrossRefGoogle Scholar
  35. Kuehn R, Hindenlang KE, Holzgang O, Senn J, Stoeckl B, Sperisen C (2007) Genetic effect of transportation infrastructure on roe deer populations (Capreolus capreolus). J Hered 98:13–22PubMedCrossRefGoogle Scholar
  36. Legendre P, Borcard D, Peres-Neto PR (2005) Analyzing beta diversity: Partitioning the spatial variation of community composition data. Ecol Monogr 75:435–450CrossRefGoogle Scholar
  37. Legendre P, Fortin MJ (2010) Comparison of the Mantel test and alternative approaches for detecting complex multivariate relationships in the spatial analysis of genetic data. Mol Ecol Res 10:831–844CrossRefGoogle Scholar
  38. Legendre P, De Caceres M, Borcard D (2010) Community surveys through space and time: Testing the space–time interaction in the absence of replication. Ecology 9:262–272CrossRefGoogle Scholar
  39. Legendre P, Legendre L (2012) Numerical Ecology. Third English edition. Elsevier Science BV, Amsterdam, The NetherlandsGoogle Scholar
  40. Licoppe A (2006) The diurnal habitat used by red deer (Cervus elaphus L.) in the Haute Ardenne. Eur J Wildl Res 52:164–170CrossRefGoogle Scholar
  41. Linnell J, Wahlström LK, Gaillard JM (1998) From birth to independence: birth, growth, neonatal mortality, hiding behaviour and dispersal. In: The European Roe Deer: The Biology of Success (eds Andersen R, Duncan P, Linnell JDC), pp. 257–283. Scandinavian University Press, Oslo, NorwayGoogle Scholar
  42. Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: Combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197CrossRefGoogle Scholar
  43. Morellet N, Van Moorter B, Cargnelutti B, Angibault JM, Lourtet B, Merlet J, Ladet S, Hewison AJM (2011) Landscape composition influences roe deer habitat selection at both home range and landscape scales. Landscape Ecol 26:999–1010CrossRefGoogle Scholar
  44. Nei M (1972) Genetic distances between populations. Am Nat 106:283–392CrossRefGoogle Scholar
  45. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590PubMedCentralPubMedGoogle Scholar
  46. Nielsen EK, Olesen CR, Pertoldi C, Gravlund P, Barker JSF, Mucci N, Randi E, Loeschcke V (2008) Genetic structure of the Danish red deer (Cervus elaphus). Biol J Linn Soc 95:688–701CrossRefGoogle Scholar
  47. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2011) Package ‘vegan’ version 2.0-2. http://cran.r-project.org/web/packages/vegan/index.html
  48. Peakall R, Smouse PE (2006) GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  49. Paetkau D, Slade R, Burden M, Estoup A (2004) Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mol Ecol 13:55–65PubMedCrossRefGoogle Scholar
  50. Perez-Espona S, Perez-Barberia FJ, Mcleod JE, Jiggins CD, Gordon IJ, Pemberton JM (2008) Landscape features affect gene flow of Scottish Highland red deer (Cervus elaphus). Mol Ecol 17:981–996PubMedCrossRefGoogle Scholar
  51. Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: Estimation and comparison of fractions. Ecology 87:2614–2625PubMedCrossRefGoogle Scholar
  52. Piry S, Alapetite A, Cornuet JM, Paetkau D, Baudouin L, Estoup A (2004) GENECLASS2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539PubMedCrossRefGoogle Scholar
  53. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedCentralPubMedGoogle Scholar
  54. Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci U S A 94:9197–9201PubMedCentralPubMedCrossRefGoogle Scholar
  55. Rousset F (2008) Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Res 8:103–106CrossRefGoogle Scholar
  56. ter Braak CJF, Šmilauer P (2002) Canoco 4.5. Microcomputer power, Ithaca, New YorkGoogle Scholar
  57. Thulin CG (2006) Microsatellite investigation of roe deer (Capreolus capreolus) in Scandinavia reveals genetic differentiation of a Baltic Sea Island population. Eur J Wildl Res 52:228–235CrossRefGoogle Scholar
  58. Tromcé M, Cahill S, De Vries JG, Farrall H, Folkeson L, Fry G, Hicks C, Peymen, J (Eds.) (2002) COST 341 - Habitat Fragmentation due to transportation infrastructure: The European Review, 253 pp. Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  59. Vangestel C, Mergeay J, Dawson DA, Vandomme V, Lens L (2011) Genetic diversity and population structure in contemporary house sparrow populations along an urbanization gradient. Heredity 109:163–172CrossRefGoogle Scholar
  60. Wahlström LK, Liberg O (1995) Contrasting dispersal patterns in two Scandinavian roe deer Capreolus capreolus populations. Wildl Biol 1:159–164Google Scholar
  61. Wang M, Schreiber A (2001) The impact of habitat fragmentation and social structure on the population genetics of roe deer (Capreolus capreolus L.) in Central Europe. Heredity 86:703–715PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Research Institute for Nature and Forest (INBO)GeraardsbergenBelgium

Personalised recommendations