Skip to main content

Advertisement

Log in

Noninvasive genetic sampling allows estimation of capercaillie numbers and population structure in the Bohemian Forest

  • Original Paper
  • Published:
European Journal of Wildlife Research Aims and scope Submit manuscript

Abstract

Wildlife conservation and management of endangered species requires reliable information on the size and structure of populations. One of the flagship species in European wildlife conservation is the forest-dwelling capercaillie (Tetrao urogallus), where several populations are endangered. In the Bohemian Forest, e.g., the population severely declined 30 years ago with only 100 birds remaining in 1985. Subsequently, breeding and release programs were conducted to supplement the local population. The current distribution and population size, however, remained unknown. With recent habitat changes and increasing recreational activities, a reliable population estimate to inform conservation plans was needed. A team of scientists and volunteers collected fresh capercaillie droppings covering an area of about 120,000 ha. We genotyped ten microsatellite loci to estimate the current population size and to determine the population’s spatial and genetic structure. Population size and density estimators revealed a population size of approximately 500 individuals, which is thus one of the two largest relict populations in the low mountain ranges of temperate Europe. The population clustering revealed gene flow across the entire study area. Several genotypes were documented with multiple recaptures at spatial distances between 10 and 30 km additionally corroborating gene flow across the entire landscape of the study area. Males were more closely related than females on small spatial scales up to 3 km, indicating lower dispersal rates in males. We conclude that the population currently appears to have a viable size and shows unrestricted gene flow across state borders and management units of the entire Bohemian Forest. However, long-term viability of this population requires a transboundary strategy to sustainably protect and monitor this isolated capercaillie population in Central Europe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alda F, Sastre P, De La Cruz-Cardiel PJ, Doadrio I (2011) Population genetics of the endangered Cantabrian capercaillie in Northern Spain. Anim Cons 14:249–260. doi:10.1111/j.1469-1795.2010.00425.x

    Article  Google Scholar 

  • Alda F, González MA, Olea PP, Ena V, Godinho R, Drovetski SV (2013) Genetic diversity, structure and conservation of the endangered Cantabrian Capercaillie in a unique peripheral habitat. Eur J Wildl Res. doi:10.1007/s10344-013-0727-6

    Google Scholar 

  • Arlettaz R, Patthey P, Baltic P, Leu T, Schaub M, Palme R, Jenni-Eiermann S (2007) Spreading free-riding snow sports represent a novel serious threat for wildlife. Proc R Soc Lond B 274:1219–1224. doi:10.1098/rspb.2006.0434

    Article  Google Scholar 

  • Baines D, Moss R, Dugan D (2004) Capercaillie breeding success in relation to forest habitat and predator abundance. J Appl Ecol 41:59–71. doi:10.1111/j.1365-2664.2004.00875.x

    Article  Google Scholar 

  • Bässler C (2004) Das Klima im Nationalpark Bayerischer Wald – Darstellung, Entwicklung und Auswirkung. Nationalparkverwaltung Bayerischer Wald, Grafenau, Germany

  • Beja-Pereira A, Oliveira R, Alves PC, Schwartz MK, Luikart G (2009) Advancing ecological understandings through technological transformations in noninvasive genetics. Mol Ecol Resour 9:1279–1301. doi:10.1111/j.1755-0998.2009.02699.x

    Article  PubMed  Google Scholar 

  • BirdLife International (2012) Tetrao urogallus. In: IUCN 2013. IUCN red list of threatened species. Version 2013.2. www.iucnredlist.org. Downloaded on 29 March 2012

  • Bonin A, Nicole F, Pompanon F, Miaud C, Taberlet P (2007) Population adaptive index: a new method to help measure intraspecific genetic diversity and prioritize populations for conservation. Cons Biol 21:697–708. doi:10.1111/j.1523-1739.2007.00685.x

    Article  Google Scholar 

  • Bonter DN, Cooper CB (2012) Data validation in citizen science: a case study from project feederwatch. Front Ecol Environ 10:305–307. doi:10.1890/110273

    Article  Google Scholar 

  • Bouzat JL, Johnson K (2004) Genetic structure among closely spaced leks in a peripheral population of lesser prairie-chickens. Mol Ecol 13:499–505. doi:10.1046/j.1365-294X.2003.02068.x

    Article  PubMed  Google Scholar 

  • Boyce MS (1992) Population viability analysis. Annu Rev Ecol Syst 23:481--506

  • Braunisch V, Segelbacher G, Hirzel AH (2010) Modelling functional landscape connectivity from genetic population structure: A new spatially explicit approach. Mol Ecol 19:3664--3678

  • Bufka L (2011) Verbreitung und Populationsentwicklung im Böhmerwald (Šumava). In: Das Auerhuhn im Oberen Bayerischen Wald und Böhmerwald (ed: Naturpark Oberer Bayerischer Wald) pp: 119–131

  • Burnham KP, Overton WS (1978) Estimation of the size of a closed population when capture probabilities vary among animals. Biometrika 65:625–633

    Article  Google Scholar 

  • Burnham KP, Overton WS (1979) Robust estimation of population size when capture probabilities vary among animals. Ecology 60:927–936

    Article  Google Scholar 

  • Chao A (1984) Nonparametric estimation of the number of classes in a population. Scand J Stat 11:265–270

    Google Scholar 

  • Chao A, Bunge J (2002) Estimating the number of species in a stochastic abundance model. Biometrics 58:531–539. doi:10.1111/j.0006-341X.2002.00531.x

    Article  PubMed  Google Scholar 

  • Chao A, Lee SM (1992) Estimating the number of classes via sample coverage. J Am Stat Assoc 87:210–217

    Article  Google Scholar 

  • Czech B, Krausman PR, Devers PK (2000) Economic associations among causes of species endangerment in the United States. BioScience 50:593–601. doi:10.1641/0006-3568(2000)050[0593:EAACOS]2.0.CO;2

    Article  Google Scholar 

  • Dickinson JL, Zuckerberg B, Bonter D (2010) Citizen science as an ecological research tool: challenges and benefits. Annu Rev Ecol Evol Syst 41:149–172. doi:10.1146/annurev-ecolsys-102209-144636

    Article  Google Scholar 

  • Efford MG (2011) Estimation of population density by spatially explicit capture-recapture analysis of data from area searches. Ecology 92:2202–2207

    Article  PubMed  Google Scholar 

  • Efford MG, Fewster RM (2013) Estimating population size by spatially explicit capture-recapture. Oikos 122: 918--928

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14: 2611--2620

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567. doi:10.1111/j.1755-0998.2010.02847.x

    Article  PubMed  Google Scholar 

  • Fedy BC, Martin K, Ritland C, Young J (2008) Genetic and ecological data provide incongruent interpretations of population structure and dispersal in naturally subdivided populations of white-tailed ptarmigan (Lagopus leucura). Mol Ecol 17:1905–1917. doi:10.1111/j.1365-294X.2008.03720.x

    Article  PubMed  CAS  Google Scholar 

  • Fronhofer EA, Kubisch A, Hilker FM, Hovestadt T, Poethke HJ (2012) Why are metapopulations so rare? Ecology 93:1967–1978. doi:10.1890/11-1814.1

    Article  PubMed  Google Scholar 

  • Gjerde I, Wegge P (1989) Spacing pattern, habitat use and survival of capercaillie in a fragmented winter habitat. Orn Scand 20:219–225

    Article  Google Scholar 

  • Griffiths R, Double MC, Orr K, Dawson RJG (1998) A DNA test to sex most birds. Mol Ecol 7:1071–1075. doi:10.1046/j.1365-294x.1998.00389.x

    Article  PubMed  CAS  Google Scholar 

  • Grimm V, Storch I (2000) Minimum viable population size of capercaillie Tetrao urogallus: results from a stochastic model. Wildl Biol 6:219–225

    Google Scholar 

  • Guillot G, Mortier F, Estoup A (2005) Geneland: a computer package for landscape genetics. Mol Ecol Notes 5:712–715. doi:10.1111/j.1471-8286.2005.01031.x

    Article  CAS  Google Scholar 

  • Guillot G, Renaud S, Ledevin R, Michaux J, Claude J (2012) A unifying model for the analysis of phenotypic, genetic, and geographic data. Syst Biol 61:897–911. doi:10.1093/sysbio/sys038

    Article  PubMed  Google Scholar 

  • Hjorth I (1970) Reproductive behaviour in tetraonidae with special reference to males. Viltrevy 7:183--196

  • Hlavatá A (2002) Ekologie tetřeva hlušce (Tetrao urogallus). Diplomová práce, přírodovědecká fakulta UK Praha, m.s., 95 pp, http://www.npsumava.cz/cz/3501/4292/clanek/

  • Höglund J, Alatalo RV, Lundberg A, Rintamäki PT, Lindell J (1999) Microsatellite markers reveal the potential for kin selection on black grouse leks. Proc R Soc Lond B 266:813–816

    Article  Google Scholar 

  • Jacob G, Debrunner R, Gugerli F, Schmid B, Bollmann K (2010) Field surveys of capercaillie (Tetrao urogallus) in the Swiss Alps underestimated local abundance of the species as revealed by genetic analyses of non-invasive samples. Conserv Genet 11:1–12. doi:10.1007/s10592-008-9794-8

    Article  Google Scholar 

  • Johnson PCD, Haydon DT (2007) Maximum likelihood estimation of allelic dropout and false allele error rates from microsatellite genotypes in the absence of reference data. Genetics 175:827–842

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Klaus S, Andreev AV, Bergmann HH, Müller F, Porkert J, Wiesner J (1989) Die Auerhühner. Neue Brehm Bücherei, Ziemsen Verlag, Wittenberg

  • Lacy RC, Sherman PW (1983) Kin recognition by phenotype matching. Am Nat 121:489–512

    Article  Google Scholar 

  • Lepczyk CA, Boyle OD, Vargo TL, Gould P, Jordan R, Liebenberg L, Masi S, Mueller WP, Prysby MD, Vaughan H (2009) Symposium 18: citizen science in ecology: the intersection of research and education. Bull Ecol Soc Am 90:308–317. doi:10.1890/0012-9623-90.3.308

    Article  Google Scholar 

  • Luikart G, Ryman N, Tallmon DA, Schwartz MK, Allendorf FW (2010) Estimation of census and effective population sizes: the increasing usefulness of DNA-based approaches. Conserv Genet 11:355–373

    Article  CAS  Google Scholar 

  • Lukacs PM, Burnham KP (2005) Review of capture-recapture methods applicable to noninvasive genetic sampling. Mol Ecol 14:3909–3919. doi:10.1111/j.1365-294X.2005.02717.x

    Article  PubMed  Google Scholar 

  • Mäki-Petäys H, Corander J, Aalto J, Liukkonen T, Helle P, Orell M (2007) No genetic evidence of sex-biased dispersal in a lekking bird, the capercaillie (Tetrao urogallus). J Evol Biol 20:865–873. doi:10.1111/j.1420-9101.2007.01314.x

    Article  PubMed  Google Scholar 

  • Marshall K, Edwards-Jones G (1998) Reintroducing capercaillie (Tetrao urogallus) into southern Scotland: identification of minimum viable populations at potential release sites. Biodiv Cons 7:275–296. doi:10.1023/A:1008844726747

  • Miller CR, Joyce P, Waits LP (2005) A new method for estimating the size of small populations from genetic mark-recapture data. Mol Ecol 14:1991–2005

    Article  PubMed  CAS  Google Scholar 

  • Mollet P, Badilatti B, Bollmann K, Graf RF, Hess R, Jenny H, Mulhauser B, Perrenould A, Rudmann F, Sachot S (2003) Verbreitung und Bestand des Auerhuhns Tetrao urogallus in der Schweiz 2001 und ihre Veränderungen im 19. und 20. Jahrhundert. Ornithol Beob 100:67–86

    Google Scholar 

  • Moss R, Picozzi N, Summers RW, Baines D (2000) Capercaillie Tetrao urogallus in Scotland—demography of a declining population. Ibis 142:259–267. doi:10.1111/j.1474-919X.2000.tb04865.x

    Article  Google Scholar 

  • Norris JL, Pollock KH (1998) Non-parametric MLE for Poisson species abundance models allowing for heterogeneity between species. Environ Ecol Stat 5:391–402. doi:10.1023/A:1009659922745

    Article  Google Scholar 

  • Paudel PK, Kindlmann P (2012) Human disturbance is a major determinant of wildlife distribution in Himalayan Midhill landscapes of Nepal. Anim Cons 15:283–293. doi:10.1111/j.1469-1795.2011.00514.x

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. doi:10.1111/j.1471-8286.2005.01155.x

    Article  Google Scholar 

  • Pennell MW, Stansbury CR, Waits LP, Miller CR (2013) Capwire: a R package for estimating population census size from non-invasive genetic sampling. Mol Ecol Resour 13:154–157

    Article  PubMed  Google Scholar 

  • Piertney SB, Höglund J (2001) Polymorphic microsatellite DNA markers in black grouse (Tetrao tetrix). Mol Ecol Notes 1:303–304. doi:10.1046/j.1471-8278.2001.00118.x

    Article  CAS  Google Scholar 

  • Pollo CJ, Robles L, Sejas J, García-Miranda Á, Otero R (2003) Cantabrian capercaillie Tetrao urogallus cantabricus population size and range trend. Will the capercaillie survive in the Cantabrian mountains? Grouse News 26:3–5

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  PubMed Central  Google Scholar 

  • Quantum GIS Development Team (2012). Quantum GIS Geographic Information System. Open Source Geospatial Foundation Project, http://qgis.osgeo.org

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, www.R-project.org

  • Ranta E, Lindstrom J, Linden H (1995) Synchrony in tetraonid population dynamics. J Animal Ecol 64:767–776

    Article  Google Scholar 

  • Regnaut S (2004) Population genetics of Capercaillie (Tetrao urogallus) in the Jura and the Pyrenees: a non-invasive approach to avian conservation genetics. Thesis at the Facultè de Biologie et de Mèdecine, Universite de Lausanne, France

  • Regnaut S, Lucas FS, Fumagalli L (2006) DNA degradation in avian faecal samples and feasibility of non-invasive genetic studies of threatened capercaillie populations. Conserv Genet 7:449–453. doi:10.1007/s10592-005-9023-7

    Article  CAS  Google Scholar 

  • Rolstad J (1989) Habitat and range use of capercaillie (Tetrao urogallus L.) in south central Scandinavian boreal forests, with spatial reference to the influence of modern forestry. PhD thesis, Department of Nature Conservation, Agricultural University, Norway

  • Rösner S, Mussard-Forster E, Lorenc T, Müller J (2014) Recreation shapes a “landscape of fear” for a threatened forest bird species in Central Europe. Landscape Ecol 29:55–66

    Article  Google Scholar 

  • Rutkowski R, Niewęgłowski H, Dziedzic R, Kmiec M, Godziewski J (2005) Genetic variability of the polish population of the capercaillie Tetrao urogallus. Acta Ornithol 40:27–34

    Article  Google Scholar 

  • Sachot S, Perrin N, Neet C (2006) Viability and management of an endangered Capercaillie (Tetrao urogallus) metapopulation in the Jura Mountains, Western Switzerland. Biod Cons 15:2017–2032

    Article  Google Scholar 

  • Saniga M (2002) Nest loss and chick mortality in capercaillie (Tetrao urogallus) and hazel grouse (Bonasa bonasia) in west Carpathians. Folia Zool 51:205–214

    Google Scholar 

  • Scherzinger W (2003) Artenschutzprojekt Auerhuhn im Nationalpark Bayerischer Wald von 1985-2000. Nationalparkverwaltung Bayerischer Wald

  • Segelbacher G (2002) Noninvasive genetic analysis in birds: testing reliability of feather samples. Mol Ecol Notes. 2:367--369

  • Segelbacher G, Storch I (2002) Capercaillie in the Alps: genetic evidence of metapopulation structure and population decline. Mol Ecol 11:1669–1677

  • Segelbacher G, Piertney S (2007) Phylogeography of the European Capercaillie (Tetrao urogallus) and its implications for conservation. J Ornithol 148:269–274. doi:10.1007/s10336-007-0153-1

    Article  Google Scholar 

  • Segelbacher G, Paxton RJ, Steinbruck G, Trontelj P, Storch I (2000) Characterization of microsatellites in capercaillie Tetrao urogallus (AVES). Mol Ecol 9:1934--1935

  • Segelbacher G, Höglund J, Storch I (2003a) From connectivity to isolation: genetic consequences of population fragmentation in capercaillie across Europe. Mol Ecol 12:1773–1780

  • Segelbacher G, Storch I, Tomiuk J (2003b) Genetic evidence of capercaillie Tetrao urogallus dispersal sources and sinks in the Alps. Wild Biol 9:267–273

    Google Scholar 

  • Segelbacher G, Wegge P, Sivkov AV, Höglund J (2007) Kin groups in closely spaced capercaillie leks. J Ornithol 148:79–84. doi:10.1007/s10336-006-0103-3

    Article  Google Scholar 

  • Segelbacher G, Manel S, Tomiuk J (2008) Temporal and spatial analyses disclose consequences of habitat fragmentation on the genetic diversity in capercaillie (Tetrao urogallus). Mol Ecol 17:2356–2367. doi:10.1111/j.1365-294X.2008.03767.x

  • Seidl R, Schelhaas M-J, Lexer MJ (2011) Unraveling the drivers of intensifying forest disturbance regimes in europe. Global Change Biology 17:2842--2852

  • Seiler C, Angelstam P, Bergmann H-H (2000) Conservation releases of captive-reared grouse in Europe. What do we know and what do we need? Cahiers d'Ethol 20:235–255

    Google Scholar 

  • Smith DA, Ralls K, Hurt A, Adams B, Parker M, Maldonado JE (2006) Assessing reliability of microsatellite genotypes from kit fox faecal samples using genetic and GIS analyses. Mol Ecol 15:387–406. doi:10.1111/j.1365-294X.2005.02841.x

    Article  PubMed  CAS  Google Scholar 

  • Smouse PE, Peakall R, Gonzales E (2008) A heterogeneity test for fine-scale genetic structure. Mol Ecol 17(14):3389–3400. doi:10.1111/j.1365-294X.2008.03839.x

    Article  PubMed  Google Scholar 

  • Storch I (1993) Habitat use and spacing of capercaillie in relation to forest fragmentation patterns. PhD thesis, University of Munich, Germany

  • Storch I (1995) Habitat requirements of capercaillie. In: Jenkins D (ed) Proceedings of the 6th international symposium on grouse. World pheasant association, Great Britain, pp 151–154

  • Storch I (1997) Male territoriality, female range use, and spatial organisation of capercaillie Tetrao urogallus leks. Wildl Biol 3:149–161

    Google Scholar 

  • Storch I (2001) Tetrao urogallus capercaillie, birds of Western Palaearctis. Update 3:1–24

    Google Scholar 

  • Storch I (2007) Conservation status of grouse worldwide: an update. Wildl Biol 13:5–12

    Article  Google Scholar 

  • Storch I, Segelbacher G (2000) Genetic correlates of spatial population structure in central European capercaillie Tetrao urogallus and black grouse T. tetrix: a project in progress. Wildl Biol 6:305–310

    Google Scholar 

  • Suchant R, Braunisch V (2004) Multidimensional habitat modelling in forest management: a case study using capercaillie in the black forest, Germany. Ecol Bull 51:455–469

    Google Scholar 

  • Suchant R, Braunisch V (2008) Rahmenbedingungen und Handlungsfelder für den Aktionsplan Auerhuhn - Grundlagen für ein integratives Konzept zum Erhalt einer lebensfähigen Auerhuhnpopulation im Schwarzwald. - Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg

  • Taylor AR, Knight RL (2003) Wildlife responses to recreation and associated visitor perceptions. Ecol Appl 13:951–963

    Article  Google Scholar 

  • Teuscher M, Brandl R, Rösner S, Bufka L, Lorenc T, Förster B, Hothorn T, Müller J (2011) Modelling habitat suitability for the Capercaillie Tetrao urogallus in the national parks Bavarian Forest and Šumava. Orn Anz 50:97–113

    Google Scholar 

  • Teuscher M, Brandl R, Förster B, Hothorn T, Rösner S, Müller J (2013) Forest inventories are a valuable data source for habitat modelling of forest species: an alternative to remote-sensing data. Forestry 86:241–253. doi:10.1093/forestry/cps081

    Article  Google Scholar 

  • Thiel D, Jenni-Eiermann S, Palme R (2005) Measuring corticosterone metabolites in droppings of capercaillies (Tetrao urogallus). Ann N Y Acad Sci 1046:96–108. doi:10.1196/annals.1343.009

    Article  PubMed  CAS  Google Scholar 

  • Thiel D, Ménoni E, Brenot JF, Jenni L (2007) Effects of recreation and hunting on flushing distance of capercaillie. J Wildl Manag 71:1784--1792

  • Thiel D, Jenni-Eiermann S, Jenni L (2008a) Der Einfluss von Freizeitaktivitäten auf das Fluchtverhalten, die Raumnutzung und die Stressphysiologie des Auerhuhns Tetrao urogallus. Orn Beob 105:85–96

    Google Scholar 

  • Thiel D, Jenni-Eiermann S, Braunisch V, Palme R, Jenni L (2008b) Ski tourism affects habitat use and evokes a physiological stress response in capercaillie Tetrao urogallus: a new methodological approach. J Appl Ecol 45:845–853. doi:10.1111/j.1365-2664.2008.01465.x

    Article  Google Scholar 

  • Thiel D, Jenni-Eiermann S, Palme R, Jenni L (2011) Winter tourism increases stress hormone levels in the capercaillie Tetrao urogallus. Ibis 153:122--133

  • Thiollay JM, del Hoyo J, Elliott A, Sargatal J (1994) Handbook of the birds of the world. Vol. 2: new world vultures to guineafowl. Lynx Edicions, Barcelona

  • van der Zee D (1990) The complex relationship between landscape and recreation. Landscape Ecol 4:225–236

    Article  Google Scholar 

  • van Oosterhout C, Hutchinson WF, Wills DP, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • von Blotzheim UG, Bauer KM, Bezzel E (1994) Handbuch der Vögel Mitteleuropas. Aula-Verlag, Wiesbaden

    Google Scholar 

  • Wang JP (2010) Estimating species richness by a Poisson-compound gamma model. Biometrika 97:727–740. doi:10.1093/biomet/asq026

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang JP (2011) SPECIES: an R package for species richness estimation. J Stat Software 40:1–15

    Google Scholar 

  • Wang JPZ, Lindsay BG (2005). A penalized nonparametric maximum likelihood approach to species richness estimation. J Am Statist Assoc 100:942--959

  • Wang JPZ, Lindsay BG, Cui L, Wall PK, Marion J, Zhang J, dePamphilis CW (2005) Gene capture prediction and overlap estimation in EST sequencing from one or multiple libraries. BMC Bioinformat 6:300. doi:10.1186/1471-2105-6-300

    Article  Google Scholar 

  • Wegge P, Larsen BB (1987) Spacing of adult and subadult male common capercaillie during the breeding season. Auk 104:481–490

    Article  Google Scholar 

  • Wegge P, Rolstad J (1986) Size and spacing of capercaillie leks in relation to social behavior and habitat. Behav Ecol Sociobiol 19:401–408

    Article  Google Scholar 

  • Wegge P, Rolstad J (2011) Clearcutting forestry and Eurasian boreal forest grouse: long-term monitoring of sympatric capercaillie Tetrao urogallus and black grouse T. tetrix reveals unexpected effects on their population performances. Forest Ecol Manag 261:1520–1529. doi:10.1016/j.foreco.2011.01.041

    Article  Google Scholar 

  • Wilson GJ, Delahay RJ (2001) A review of methods to estimate the abundance of terrestrial carnivores using field signs and observation. Wildl Res 28:151–164. doi:10.1071/WR00033

    Article  Google Scholar 

Download references

Acknowledgments

We thank the rangers, foresters, hunters, and enthusiasts in Germany and the Czech Republic for their countless hours of fieldwork. We thank C. Budach, C. Heuck, G. Fischl, I. Möller, J. Macher, J. Stastny, E. Mussard-Forster, K.H. Schindlatz, K. Döringer, W. Scherzinger, M. Teuscher, N. & N. Farwig, S. Michl, and Y. Tiede for their general support, help during seminars, data collection, and working extensively in the field. We thank M. Teuscher for providing data. T.B. Mueller, D. Berens, and J. Albrecht helped with spatial and genetic analysis. T.B. Mueller helped with linguistic revision of the manuscript. We thank C. Scherer, S. Götzfried, and Y. Tiede for their help with laboratory work. Two anonymous referees and C. Gortázar helped to improve a previous version of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sascha Rösner.

Additional information

Communicated by C. Gortázar

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 48 kb)

ESM 2

(DOCX 47 kb)

ESM 3

(DOCX 30 kb)

ESM 4

(DOCX 4803 kb)

ESM 5

(DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rösner, S., Brandl, R., Segelbacher, G. et al. Noninvasive genetic sampling allows estimation of capercaillie numbers and population structure in the Bohemian Forest. Eur J Wildl Res 60, 789–801 (2014). https://doi.org/10.1007/s10344-014-0848-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10344-014-0848-6

Keywords

Navigation