Advertisement

European Journal of Wildlife Research

, Volume 60, Issue 4, pp 569–577 | Cite as

Testosterone production and spermatogenesis in free-ranging Eurasian lynx (Lynx lynx) throughout the year

  • Karin MüllerEmail author
  • Stephanie Koster
  • Johanna Painer
  • Arne Söderberg
  • Dolores Gavier-Widèn
  • Edgar Brunner
  • Martin Dehnhard
  • Katarina Jewgenow
Original Paper

Abstract

Seasonal variation in reproduction is common in mammals as an adaptation to annual changes in the habitat. In lynx, male reproduction activity is of special interest because female lynxes are monoestric with an unusual narrow (about 1 month) breeding season. In Eurasian lynx, mating occurs between January and April depending on the latitude. To characterize the seasonal pattern of sperm and testosterone production in free-ranging Eurasian lynxes, long-term frozen-stored testis material obtained postmortem from 74 hunted or road-killed lynxes in Sweden was used to analyze annual changes in testis mass, testicular testosterone content, and spermatogenetic activity. Values of most gonadal parameters obtained in subadult lynxes were significantly different from the values observed in adult males. In adult lynxes, a moderate annual fluctuation of gonadal parameters was found which was most profound for testis weight and testicular testosterone concentration reaching highest values in March (median of 2.18 g and 2.67 μg/g tissue respectively). Grouping the data of pre-/breeding (January–April) and postbreeding season (May–September) revealed significant changes in testis weight and testosterone concentration. The relative spermatogenetic activity remained high in postbreeding testes. However, net sperm production decreased according to reduction of testis mass and a tendency to lower cauda epididymal sperm numbers in the postbreeding period was observed. Our results demonstrate that it is possible to analyze the gonadal activity of frozen testis/epididymis tissue postmortem and that male Eurasian lynxes show—opposite to the females—only moderate seasonal changes in their reproductive capacity.

Keywords

Lynx Seasonality Spermatogenesis Testis Testosterone 

Notes

Acknowledgments

We thank Christiane Franz, Katrin Paschmionka and Marlies Rohleder for their excellent technical assistance. We also thank the staff of the Necropsy Division and Jessica Åsbrink, SVA, for their help with the postmortem examinations and sample collection. This work was supported by the German Ministry of Education and Research (BMBF Number 033 L046).

References

  1. Andersen Berg K, Wiger R, Dahl E, Torp T, Farstad W, Krogenaes A, McNeilly AS, Paulenz H, Ropstad E (2001) Seasonal changes in spermatogenic activity and in plasma levels of FSH, LH and testosterone, and the effect of immunization against inhibin in the male silver fox (Vulpes vulpes). Int J Androl 24(5):284–294PubMedCrossRefGoogle Scholar
  2. Axner E, Uhlhorn H, Agren E, Morner T (2009) Reproductive maturation in the male Eurasian lynx (Lynx lynx): a study on 55 reproductive organs collected from carcasses during 2002-2005. Reprod Domest Anim 44(3):467–473. doi: 10.1111/j.1439-0531.2008.01130.x PubMedCrossRefGoogle Scholar
  3. Berndtson WE, Jones LS (1989) Relationship of intratesticular testosterone content of stallions to age, spermatogenesis, Sertoli cell distribution and germ cell-Sertoli cell ratios. J Reprod Fertil 85(2):511–518PubMedCrossRefGoogle Scholar
  4. Blottner S, Jewgenow K (2007) Moderate seasonality in testis function of domestic cat. Reprod Domest Anim 42(5):536–540. doi: 10.1111/j.1439-0531.2006.00817.x PubMedCrossRefGoogle Scholar
  5. Blottner S, Hingst O, Meyer HH (1996) Seasonal spermatogenesis and testosterone production in roe deer (Capreolus capreolus). J Reprod Fertil 108(2):299–305PubMedCrossRefGoogle Scholar
  6. Blottner S, Schon J, Jewgenow K (2006) Seasonally activated spermatogenesis is correlated with increased testicular production of testosterone and epidermal growth factor in mink (Mustela vison). Theriogenology 66(6–7):1593–1598. doi: 10.1016/j.theriogenology.2006.01.041 PubMedCrossRefGoogle Scholar
  7. Bronson FH, Heidemann PD (1994) Seasonal regulation of reproduction in mammals. In: Knobil E, Neill JD (eds) The Physiology of Reproduction. Raven, New York, pp 541–583Google Scholar
  8. Brown JL (2011) Female reproductive cycles of wild female felids. Anim Reprod Sci 124(3–4):155–162. doi: 10.1016/j.anireprosci.2010.08.024 PubMedCrossRefGoogle Scholar
  9. Burgess EA, Lanyon JM, Keeley T (2012) Testosterone and tusks: maturation and seasonal reproductive patterns of live, free-ranging male dugongs (Dugong dugon) in a subtropical population. Reproduction 143(5):683–697. doi: 10.1530/Rep-11-0434 PubMedCrossRefGoogle Scholar
  10. Crosier AE, Marker L, Howard J, Pukazhenthi BS, Henghali JN, Wildt DE (2007) Ejaculate traits in the Namibian cheetah (Acinonyx jubatus): influence of age, season and captivity. Reprod Fertil Dev 19(2):370–382. doi: 10.1071/Rd06057 PubMedCrossRefGoogle Scholar
  11. Fuentes LB, Caravaca N, Pelzer LE, Scardapane LA, Piezzi RS, Guzman JA (1991) Seasonal variations in the testis and epididymis of vizcacha (Lagostomus maximus maximus). Biol Reprod 45(3):493–497PubMedCrossRefGoogle Scholar
  12. Ganan N, Gonzalez R, Sestelo A, Garde JJ, Sanchez I, Aguilar JM, Gomendio M, Roldan ER (2009) Male reproductive traits, semen cryopreservation, and heterologous in vitro fertilization in the bobcat (Lynx rufus). Theriogenology 72(3):341–352. doi: 10.1016/j.theriogenology.2009.03.002 PubMedCrossRefGoogle Scholar
  13. Ganan N, Sestelo A, Garde JJ, Martinez F, Vargas A, Sanchez I, Perez-Aspa MJ, Lopez-Bao JV, Palomares F, Gomendio M, Roldan ER (2010) Reproductive traits in captive and free-ranging males of the critically endangered Iberian lynx (Lynx pardinus). Reproduction 139(1):275–285. doi: 10.1530/REP-09-0259 PubMedCrossRefGoogle Scholar
  14. Goeritz F, Quest M, Wagener A, Fassbender M, Broich A, Hildebrandt TB, Hofmann RR, Blottner S (2003) Seasonal timing of sperm production in roe deer: interrelationship among changes in ejaculate parameters, morphology and function of testis and accessory glands. Theriogenology 59(7):1487–1502PubMedCrossRefGoogle Scholar
  15. Goritz F, Neubauer K, Naidenko SV, Fickel J, Jewgenow K (2006) Investigations on reproductive physiology in the male Eurasian lynx (Lynx lynx). Theriogenology 66(6–7):1751–1754. doi: 10.1016/j.theriogenology.2006.02.036 PubMedCrossRefGoogle Scholar
  16. Hasler M, Hothorn LA (2008) Multiple contrast tests in the presence of heteroscedasticity. Biom J 50:793–800PubMedCrossRefGoogle Scholar
  17. Hayssen V, Tienhoven AV, Tienhoven AV (1993) Asdell's pattern of mammalian reproduction. A compendium of species-specific data. Cornell University, IthacaGoogle Scholar
  18. Henriksen HB, Andersen R, Hewison AJM, Gaillard J-M, Bronndal M, Jonsson S, Linnell JDC, Odden J (2005) Reproductive biology of captive female Eurasian lynx, Lynx lynx. Eur J Wildl Res 51(3):151–156CrossRefGoogle Scholar
  19. Hikim AP, Hikim IS, Amador AG, Bartke A, Woolf A, Russell LD (1991) Reinitiation of spermatogenesis by exogenous gonadotropins in a seasonal breeder, the woodchuck (Marmota monax), during gonadal inactivity. Am J Anat 192(2):194–213. doi: 10.1002/aja.1001920208 PubMedCrossRefGoogle Scholar
  20. Jewgenow K, Songsasen N (2014) Reproduction and advances in reproductive studies in carnivores. In: Holt WV, Brown JL, Comizzoli P (eds) Reproductive sciences in animal conservation—progress and prospects. SpringerGoogle Scholar
  21. Jewgenow K, Goeritz F, Neubauer K, Fickel J, Naidenko SV (2006) Characterization of reproductive activity in captive male Eurasian lynx (Lynx lynx). Eur J Wildl Res 52(1):34–38. doi: 10.1007/s10344-005-0002-6 CrossRefGoogle Scholar
  22. Kaneko K, Akiya Y, Sato H, Tanaka A, Aoki H, Miyoshi M, Abukawa T, Mochizuki M, Kawakami S (2005) Seasonal influence on testicular function of male raccoons, Procyon lotor. J Reprod Dev 51(4):477–482PubMedCrossRefGoogle Scholar
  23. Konietschke F, Brunner E, Hothorn LA (2012) Rank-based multiple test procedures and simultaneous confidence intervals. Electron J Stat 6:738–759CrossRefGoogle Scholar
  24. Kvam T (1990) Ovulation rates in European lynx, Lynx lynx (L.), from Norway. Mamm Biol 55(5):315–320Google Scholar
  25. Kvam T (1991) Reproduction in the European lynx, Lynx lynx. Mamm Biol 56(3):146–158Google Scholar
  26. Lermen D, Blomeke B, Browne R, Clarke A, Dyce PW, Fixemer T, Fuhr GR, Holt WV, Jewgenow K, Lloyd RE, Lotters S, Paulus M, Reid GM, Rapoport DH, Rawson D, Ringleb J, Ryder OA, Sporl G, Schmitt T, Veith M, Muller P (2009) Cryobanking of viable biomaterials: implementation of new strategies for conservation purposes. Mol Ecol 18(6):1030–1033. doi: 10.1111/j.1365-294X.2008.04062.x PubMedCrossRefGoogle Scholar
  27. Lincoln GA (1989) Seasonal aspects of testicular function. In: Burger H, de Kretser D (eds) The Testis. Raven, New York, pp 329–386Google Scholar
  28. Minter LJ, DeLiberto TJ (2008) Seasonal variation in serum testosterone, testicular volume, and semen characteristics in the coyote (Canis latrans). Theriogenology 69(8):946–952. doi: 10.1016/j.theriogenology.2008.01.010 PubMedCrossRefGoogle Scholar
  29. Moss AM, Clutton-Brock TH, Monfort SL (2001) Longitudinal gonadal steroid excretion in free-living male and female meerkats (Suricata suricatta). Gen Comp Endocrinol 122(2):158–171. doi: 10.1006/gcen.2001.7622 PubMedCrossRefGoogle Scholar
  30. Okuyama MW, Shimozuru M, Takahashi N, Fukui D, Nakamura R, Tsubota T (2012) Seasonal changes in spermatogenesis and peripheral testosterone concentration in raccoons (Procyon lotor) in Hokkaido. J Vet Med Sci 74(6):727–732PubMedCrossRefGoogle Scholar
  31. Preston BT, Stevenson IR, Lincoln GA, Monfort SL, Pilkington JG, Wilson K (2012) Testes size, testosterone production and reproductive behaviour in a natural mammalian mating system. J Anim Ecol 81(1):296–305. doi: 10.1111/j.1365-2656.2011.01907.x PubMedCrossRefGoogle Scholar
  32. Raynaud J, Muller K, Schradin C (2012) Experimental increase of testosterone levels in free-ranging juvenile male African striped mice (Rhabdomys pumilio) induces physiological, morphological, and behavioral changes. Gen Comp Endocrinol 178(1):108–115. doi: 10.1016/j.ygcen.2012.04.028 PubMedCrossRefGoogle Scholar
  33. Roelants H, Schneider F, Goritz F, Streich J, Blottner S (2002) Seasonal changes of spermatogonial proliferation in roe deer, demonstrated by flow cytometric analysis of c-kit receptor, in relation to follicle-stimulating hormone, luteinizing hormone, and testosterone. Biol Reprod 66(2):305–312PubMedCrossRefGoogle Scholar
  34. Spano M, Evenson DP (1993) Flow cytometric analysis for reproductive biology. Biol Cell 78(1–2):53–62PubMedCrossRefGoogle Scholar
  35. Spindler RE, Wildt DE (1999) Circannual variations in intraovarian oocyte but not epididymal sperm quality in the domestic Cat. Biol Reprod 61(1):188–194PubMedCrossRefGoogle Scholar
  36. Swanson WF, Brown JL, Wildt DE (1996) Influence of seasonality on reproductive traits of the male Pallas' cat (Felis manul) and implications for captive management. J Zool Wildl Med 27(2):234–240Google Scholar
  37. Tsubota T, Howell-Skalla L, Nitta H, Osawa Y, Mason JI, Meiers PG, Nelson RA, Bahr JM (1997) Seasonal changes in spermatogenesis and testicular steroidogenesis in the male black bear Ursus americanus. J Reprod Fertil 109(1):21–27PubMedCrossRefGoogle Scholar
  38. Welbergen JA (2011) Fit females and fat polygynous males: seasonal body mass changes in the grey-headed flying fox. Oecologia 165(3):629–637. doi: 10.1007/s00442-010-1856-1 PubMedCrossRefGoogle Scholar
  39. Wildt DE, Brown JL, Swanson WF (1998) Cats. In: Knobil E, Neill JD (eds) Encyclopedia of Reproduction, vol 1. Academic, San Diego, pp 497–510Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Karin Müller
    • 1
    • 5
    Email author
  • Stephanie Koster
    • 1
  • Johanna Painer
    • 1
  • Arne Söderberg
    • 2
  • Dolores Gavier-Widèn
    • 2
    • 3
  • Edgar Brunner
    • 4
  • Martin Dehnhard
    • 1
  • Katarina Jewgenow
    • 1
  1. 1.Leibniz-Institut für Zoo- und WildtierforschungBerlinGermany
  2. 2.Department of Pathology and Wildlife DiseasesNational Veterinary Institute (SVA)UppsalaSweden
  3. 3.Department of Biomedical Sciences and Veterinary Public HealthSwedish University of Agricultural Sciences (SLU)UppsalaSweden
  4. 4.Department of Medical StatisticsUniversity Medical Center GöttingenGöttingenGermany
  5. 5.Arbeitsgruppe ReproduktionsbiologieLeibniz-Institut für Zoo- und WildtierforschungBerlinGermany

Personalised recommendations