Skip to main content

Measuring effects of linear obstacles on wildlife movements: accounting for the relationship between step length and crossing probability

Abstract

Animal movements in the landscape are influenced by linear features such as rivers, roads and power lines. Prior studies have investigated how linear features, particularly roads, affect movement rates by comparing animal's movement rate measured as step lengths (i.e., the distance between consecutive observations such as GPS locations) before, during and after crossing of a linear feature. The null hypothesis has been that the length of crossing steps should not differ from other steps, and a deviation from this, mainly that steps are longer during crossing, has been taken as support for a disturbance effect of the linear feature. However, based on the simple relationship between the length of a step and its probability to cross a linear feature, we claim that this assumption is inappropriate to test for behavioural responses to linear features. The probability is related to the proportion of the total length of the trajectory (i.e., the path of movement) a step constitutes. Consequently, care should be taken when formulating hypotheses about how animal moves in relation to linear features in the landscape. Statistical tests should be set up with respect to the expected length based on the distribution of step lengths in the trajectory. We propose two methods that accounts for the bias in crossing frequency that is caused by step lengths, and illustrates their applications by using simulated animal trajectories as well as empirical data on reindeer in an area with a power line.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Anttonen M, Kumpula J, Colpaert A (2011) Range selection by semi-domesticated reindeer (Rangifer tarandus tarandus) in relation to infrastructure and human activity in the boreal forest environment, Northern Finland. Arctic 64(1):1–14

    Article  Google Scholar 

  • Beyer HL, Ung R, Murray DL, Fortin MJ (2013) Functional responses, seasonal variation and thresholds in behavioural responses of moose to road density. J Appl Ecol 50(2):286–294. doi:10.1111/1365-2664.12042

    Article  Google Scholar 

  • Boyce MS, Pitt J, Northrup JM, Morehouse AT, Knopff KH, Cristescu B, Stenhouse GB (2010) Temporal autocorrelation functions for movement rates from global positioning system radiotelemetry data. Philos T R Soc B 365(1550):2213–2219. doi:10.1098/rstb.2010.0080

    Article  Google Scholar 

  • Brown JS, Kotler BP (2004) Hazardous duty pay and the foraging cost of predation. Ecol Lett 7(10):999–1014. doi:10.1111/j.1461-0248.2004.00661

    Article  Google Scholar 

  • Cagnacci F, Boitani L, Powell RA, Boyce MS (2010) Animal ecology meets GPS-based radiotelemetry: a perfect storm of opportunities and challenges. Philos T R Soc B 365(1550):2157–2162. doi:10.1098/rstb.2010.0107

    Article  Google Scholar 

  • Calenge C (2006) The package "adehabitat" for the R software: a tool for the analysis of space and habitat use by animals. Ecol Model 197(3–4):516–519. doi:10.1016/j.ecolmodel.2006.03.017

    Article  Google Scholar 

  • Calenge C (2011) Analysis of animal movements in R: the adehabitatLT Package. Available at: http://cran.r-project.org/web/packages/adehabitatLT/vignettes/adehabitatLT.pdf.

  • Colman JE, Eftestol S, Tsegaye D, Flydal K, Mysterud A (2012) Is a wind-power plant acting as a barrier for reindeer Rangifer tarandus tarandus movements? Wildlife Biol 18(4):439–445. doi:10.2981/11-116

    Article  Google Scholar 

  • Cushman SA (2010) Animal movement data: GPS telemetry, autocorrelation and the need for path-level analysis. In: Cushman SA, Huettmann F (eds) Spatial complexity, informatics, and wildlife conservation. Springer, Japan, pp 131–149. doi:10.1007/978-4-431-87771-4_7

    Chapter  Google Scholar 

  • Dussault C, Ouellet JP, Laurian C, Courtois R, Poulin M, Breton L (2007) Moose movement rates along highways and crossing probability models. J Wildlife Manage 71(7):2338–2345. doi:10.2193/2006-499

    Article  Google Scholar 

  • Dyer SJ, O'Neill JP, Wasel SM, Boutin S (2002) Quantifying barrier effects of roads and seismic lines on movements of female woodland caribou in northeastern Alberta. Can J Zool 80(5):839––845. doi:10.1139/Z02-060

    Article  Google Scholar 

  • Eldegard K, Lyngved JT, Hjeljord O (2012) Coping in a human-dominated landscape: trade-off between foraging and keeping away from roads by moose (Alces alces). Eur J Wildlife Res 58(6):969–979. doi:10.1007/s10344-012-0640-4

    Article  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol S 34:487–515. doi:10.1146/annurev.ecolsys.34.011802.132419

    Article  Google Scholar 

  • Fahrig L, Rytwinski T (2009) Effects of roads on animal abundance: an empirical review and synthesis. Ecol Soc 14(1)

  • Fieberg J, Matthiopoulos J, Hebblewhite M, Boyce MS, Frair JL (2010) Correlation and studies of habitat selection: problem, red herring or opportunity? Philos T R Soc B 365(1550):2233–2244. doi:10.1098/rstb.2010.0079

    Article  Google Scholar 

  • Fog A (2008) Sampling methods for Wallenius' and Fisher's noncentral hypergeometric distributions. Commun Stat, Simulat Comput 37(2):241–257

    Article  Google Scholar 

  • Fog A (2011) Biased Urn: Biased Urn model distributions. R package version 1.05. http://CRAN.R-project.org/package=BiasedUrn

  • Forman RTT, Alexander LE (1998) Roads and their major ecological effects. Annu Rev Ecol Syst 29:207. doi:10.1146/annurev.ecolsys.29.1.207

    Article  Google Scholar 

  • Forman RTT, Deblinger RD (2000) The ecological road-effect zone of a Massachusetts (USA) suburban highway. Conserv Biol 14(1):36–46. doi:10.1046/j.1523-1739.2000.99088

    Article  Google Scholar 

  • Frair JL, Fieberg J, Hebblewhite M, Cagnacci F, DeCesare NJ, Pedrotti L (2010) Resolving issues of imprecise and habitat-biased locations in ecological analyses using GPS telemetry data. Philos T R Soc B 365(1550):2187–2200. doi:10.1098/rstb.2010.0084

    Article  Google Scholar 

  • Frair JL, Merrill EH, Visscher DR, Fortin D, Beyer HL, Morales JM (2005) Scales of movement by elk (Cervus elaphus) in response to heterogeneity in forage resources and predation risk. Landscape Ecol 20(3):273–287. doi:10.1007/s10980-005-2075-8

    Article  Google Scholar 

  • Frid A, Dill L (2002) Human-caused disturbance stimuli as a form of predation risk. Conserv Ecol 6(1)

  • Gill JA, Norris K, Sutherland WJ (2001) Why behavioural responses may not reflect the population consequences of human disturbance. Biol Conserv 97(2):265–268. doi:10.1016/S0006-3207(00)00002-1

    Article  Google Scholar 

  • Hebblewhite M, Merrill EH (2009) Trade-offs between predation risk and forage differ between migrant strategies in a migratory ungulate. Ecology 90(12):3445–3454. doi:10.1890/08-2090.1

    PubMed  Article  Google Scholar 

  • Heithaus MR, Dill LM (2002) Food availability and tiger shark predation risk influence bottlenose dolphin habitat use. Ecology 83(2):480–491. doi:10.2307/2680029

    Article  Google Scholar 

  • Horne JS, Garton EO, Krone SM, Lewis JS (2007) Analyzing animal movements using Brownian bridges. Ecology 88(9):2354–2363. doi:10.1890/06-0957.1

    PubMed  Article  Google Scholar 

  • James ARC, Stuart-Smith AK (2000) Distribution of caribou and wolves in relation to linear corridors. J Wildlife Manage 64(1):154–159. doi:10.2307/3802985

    Article  Google Scholar 

  • Johnson AR, Wiens JA, Milne BT, Crist TO (1992) Animal movements and population-dynamics in heterogeneous landscapes. Landscape Ecol 7(1):63–75. doi:10.1007/Bf02573958

    Article  Google Scholar 

  • Kareiva PM, Shigesada N (1983) Analyzing insect movement as a correlated random-walk. Oecologia 56(2–3):234–238. doi:10.1007/Bf00379695

    Article  Google Scholar 

  • Klein DR (2000) Arctic grazing systems and industrial development: can we minimize conflicts? Polar Res 19(1):91–98

    Article  Google Scholar 

  • Knight RL, Kawashima JY (1993) Responses of raven and red-tailed hawk populations to linear right-of-ways. J Wildlife Manage 57(2):266–271. doi:10.2307/3809423

    Article  Google Scholar 

  • Kuijper DPJ, Cromsigt JPGM, Churski M, Adam B, Jedrzejewska B, Jedrzejewski W (2009) Do ungulates preferentially feed in forest gaps in European temperate forest? Forest Ecol Manag 258(7):1528–1535. doi:10.1016/j.foreco.2009.07.010

    Article  Google Scholar 

  • Lambertucci SA, Speziale KL, Rogers TE, Morales JM (2009) How do roads affect the habitat use of an assemblage of scavenging raptors. Biodivers Conserv 18(8):2063–2074. doi:10.1007/s10531-008-9573-3

    Article  Google Scholar 

  • Leblond M, Dussault C, Ouellet JP (2013) Avoidance of roads by large herbivores and its relation to disturbance intensity. J Zool 289(1):32–40. doi:10.1111/j.1469-7998.2012.00959.x

    Article  Google Scholar 

  • Montgomery RA, Vucetich JA, Peterson RO, Roloff GJ, Millenbah KF (2013) The influence of winter severity, predation and senescence on moose habitat use. J Anim Ecol 82(2):301–309. doi:10.1111/1365-2656.12000

    PubMed  Article  Google Scholar 

  • Murphy SM, Curatolo JA (1987) Activity budgets and movement rates of caribou encountering pipelines, roads, and traffic in Northern Alaska. Can J Zool 65(10):2483–2490

    Article  Google Scholar 

  • Olsson MPO, Widen P (2008) Effects of highway fencing and wildlife crossings on moose Alces alces movements and space use in southwestern Sweden. Wildlife Biol 14(1):111–117. doi:10.2981/0909-6396(2008)14[111:Eohfaw]2.0.Co;2

    Article  Google Scholar 

  • Otis DL, White GC (1999) Autocorrelation of location estimates and the analysis of radiotracking data. J Wildlife Manage 63(3):1039–1044. doi:10.2307/3802819

    Article  Google Scholar 

  • Panzacchi M, Van Moorter B, Strand O (2013) A road in the middle of one of the last wild reindeer migration routes in Norway: crossing behaviour and threats to conservation. Rangifer 33 Special Issue No. 21:15-26.

  • Polfus JL, Hebblewhite M, Heinemeyer K (2011) Identifying indirect habitat loss and avoidance of human infrastructure by northern mountain woodland caribou. Biol Conserv 144(11):2637–2646. doi:10.1016/j.biocon.2011.07.023

    Article  Google Scholar 

  • R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: http://www.R-project.org/.

  • Reimers E, Roed KH, Colman JE (2012) Persistence of vigilance and flight response behaviour in wild reindeer with varying domestic ancestry. J Evol Biol 25(8):1543–1554. doi:10.1111/j.1420-9101.2012.02538

    CAS  PubMed  Article  Google Scholar 

  • Rowcliffe JM, Carbone C, Kays R, Kranstauber B, Jansen PA (2012) Bias in estimating animal travel distance: the effect of sampling frequency. Methods Ecol Evol 3(4):653–662. doi:10.1111/j.2041-210X.2012.00197.x

    Article  Google Scholar 

  • Small MF, Hunter ML (1988) Forest fragmentation and avian nest predation in forested landscapes. Oecologia 76(1):62–64

    Google Scholar 

  • Smith MB, Aborn DA, Gaudin TJ, Tucker JC (2008) Mammalian predator distribution around a transmission line. Southeast Nat 7(2):289–300. doi:10.1656/1528-7092(2008)7[289:Mpdaat]2.0.Co;2

    Article  Google Scholar 

  • Stankowich T (2008) Ungulate flight responses to human disturbance: a review and meta-analysis. Biol Conserv 141(9):2159–2173. doi:10.1016/j.biocon.2008.06.026

    Article  Google Scholar 

  • Tomkiewicz SM, Fuller MR, Kie JG, Bates KK (2010) Global positioning system and associated technologies in animal behaviour and ecological research. Philos T R Soc B 365(1550):2163–2176. doi:10.1098/rstb.2010.0090

    Article  Google Scholar 

  • Van Moorter B, Visscher D, Herfindal I, Basille M, Mysterud A (2013) Inferring behavioural mechanisms in habitat selection studies – getting the null-hypothesis right for functional and familiarity responses. Ecography 36(3):323–330. doi:10.1111/j.1600-0587.2012.07291

    Google Scholar 

  • With KA, Gardner RH, Turner MG (1997) Landscape connectivity and population distributions in heterogeneous environments. Oikos 78(1):151–169. doi:10.2307/3545811

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

The reindeer data used here was generated by the GPS project in Setesdal, and we thank the leader of this project, Olav Strand, as well as the organizing board responsible for the project. The manuscript was improved by comments from two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diress Tsegaye.

Additional information

Communicated by C. Gortázar

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Eftestøl, S., Tsegaye, D., Herfindal, I. et al. Measuring effects of linear obstacles on wildlife movements: accounting for the relationship between step length and crossing probability. Eur J Wildl Res 60, 271–278 (2014). https://doi.org/10.1007/s10344-013-0779-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10344-013-0779-7

Keywords

  • Animal movement
  • Bias
  • Crossing probability
  • Linear features
  • Random trajectories
  • Step length