European Journal of Wildlife Research

, Volume 60, Issue 2, pp 271–278 | Cite as

Measuring effects of linear obstacles on wildlife movements: accounting for the relationship between step length and crossing probability

  • Sindre Eftestøl
  • Diress Tsegaye
  • Ivar Herfindal
  • Kjetil Flydal
  • Jonathan E. Colman
Original Paper

Abstract

Animal movements in the landscape are influenced by linear features such as rivers, roads and power lines. Prior studies have investigated how linear features, particularly roads, affect movement rates by comparing animal's movement rate measured as step lengths (i.e., the distance between consecutive observations such as GPS locations) before, during and after crossing of a linear feature. The null hypothesis has been that the length of crossing steps should not differ from other steps, and a deviation from this, mainly that steps are longer during crossing, has been taken as support for a disturbance effect of the linear feature. However, based on the simple relationship between the length of a step and its probability to cross a linear feature, we claim that this assumption is inappropriate to test for behavioural responses to linear features. The probability is related to the proportion of the total length of the trajectory (i.e., the path of movement) a step constitutes. Consequently, care should be taken when formulating hypotheses about how animal moves in relation to linear features in the landscape. Statistical tests should be set up with respect to the expected length based on the distribution of step lengths in the trajectory. We propose two methods that accounts for the bias in crossing frequency that is caused by step lengths, and illustrates their applications by using simulated animal trajectories as well as empirical data on reindeer in an area with a power line.

Keywords

Animal movement Bias Crossing probability Linear features Random trajectories Step length 

References

  1. Anttonen M, Kumpula J, Colpaert A (2011) Range selection by semi-domesticated reindeer (Rangifer tarandus tarandus) in relation to infrastructure and human activity in the boreal forest environment, Northern Finland. Arctic 64(1):1–14CrossRefGoogle Scholar
  2. Beyer HL, Ung R, Murray DL, Fortin MJ (2013) Functional responses, seasonal variation and thresholds in behavioural responses of moose to road density. J Appl Ecol 50(2):286–294. doi:10.1111/1365-2664.12042 CrossRefGoogle Scholar
  3. Boyce MS, Pitt J, Northrup JM, Morehouse AT, Knopff KH, Cristescu B, Stenhouse GB (2010) Temporal autocorrelation functions for movement rates from global positioning system radiotelemetry data. Philos T R Soc B 365(1550):2213–2219. doi:10.1098/rstb.2010.0080 CrossRefGoogle Scholar
  4. Brown JS, Kotler BP (2004) Hazardous duty pay and the foraging cost of predation. Ecol Lett 7(10):999–1014. doi:10.1111/j.1461-0248.2004.00661 CrossRefGoogle Scholar
  5. Cagnacci F, Boitani L, Powell RA, Boyce MS (2010) Animal ecology meets GPS-based radiotelemetry: a perfect storm of opportunities and challenges. Philos T R Soc B 365(1550):2157–2162. doi:10.1098/rstb.2010.0107 CrossRefGoogle Scholar
  6. Calenge C (2006) The package "adehabitat" for the R software: a tool for the analysis of space and habitat use by animals. Ecol Model 197(3–4):516–519. doi:10.1016/j.ecolmodel.2006.03.017 CrossRefGoogle Scholar
  7. Calenge C (2011) Analysis of animal movements in R: the adehabitatLT Package. Available at: http://cran.r-project.org/web/packages/adehabitatLT/vignettes/adehabitatLT.pdf.
  8. Colman JE, Eftestol S, Tsegaye D, Flydal K, Mysterud A (2012) Is a wind-power plant acting as a barrier for reindeer Rangifer tarandus tarandus movements? Wildlife Biol 18(4):439–445. doi:10.2981/11-116 CrossRefGoogle Scholar
  9. Cushman SA (2010) Animal movement data: GPS telemetry, autocorrelation and the need for path-level analysis. In: Cushman SA, Huettmann F (eds) Spatial complexity, informatics, and wildlife conservation. Springer, Japan, pp 131–149. doi:10.1007/978-4-431-87771-4_7 CrossRefGoogle Scholar
  10. Dussault C, Ouellet JP, Laurian C, Courtois R, Poulin M, Breton L (2007) Moose movement rates along highways and crossing probability models. J Wildlife Manage 71(7):2338–2345. doi:10.2193/2006-499 CrossRefGoogle Scholar
  11. Dyer SJ, O'Neill JP, Wasel SM, Boutin S (2002) Quantifying barrier effects of roads and seismic lines on movements of female woodland caribou in northeastern Alberta. Can J Zool 80(5):839––845. doi:10.1139/Z02-060 CrossRefGoogle Scholar
  12. Eldegard K, Lyngved JT, Hjeljord O (2012) Coping in a human-dominated landscape: trade-off between foraging and keeping away from roads by moose (Alces alces). Eur J Wildlife Res 58(6):969–979. doi:10.1007/s10344-012-0640-4 CrossRefGoogle Scholar
  13. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol S 34:487–515. doi:10.1146/annurev.ecolsys.34.011802.132419 CrossRefGoogle Scholar
  14. Fahrig L, Rytwinski T (2009) Effects of roads on animal abundance: an empirical review and synthesis. Ecol Soc 14(1)Google Scholar
  15. Fieberg J, Matthiopoulos J, Hebblewhite M, Boyce MS, Frair JL (2010) Correlation and studies of habitat selection: problem, red herring or opportunity? Philos T R Soc B 365(1550):2233–2244. doi:10.1098/rstb.2010.0079 CrossRefGoogle Scholar
  16. Fog A (2008) Sampling methods for Wallenius' and Fisher's noncentral hypergeometric distributions. Commun Stat, Simulat Comput 37(2):241–257CrossRefGoogle Scholar
  17. Fog A (2011) Biased Urn: Biased Urn model distributions. R package version 1.05. http://CRAN.R-project.org/package=BiasedUrn
  18. Forman RTT, Alexander LE (1998) Roads and their major ecological effects. Annu Rev Ecol Syst 29:207. doi:10.1146/annurev.ecolsys.29.1.207 CrossRefGoogle Scholar
  19. Forman RTT, Deblinger RD (2000) The ecological road-effect zone of a Massachusetts (USA) suburban highway. Conserv Biol 14(1):36–46. doi:10.1046/j.1523-1739.2000.99088 CrossRefGoogle Scholar
  20. Frair JL, Fieberg J, Hebblewhite M, Cagnacci F, DeCesare NJ, Pedrotti L (2010) Resolving issues of imprecise and habitat-biased locations in ecological analyses using GPS telemetry data. Philos T R Soc B 365(1550):2187–2200. doi:10.1098/rstb.2010.0084 CrossRefGoogle Scholar
  21. Frair JL, Merrill EH, Visscher DR, Fortin D, Beyer HL, Morales JM (2005) Scales of movement by elk (Cervus elaphus) in response to heterogeneity in forage resources and predation risk. Landscape Ecol 20(3):273–287. doi:10.1007/s10980-005-2075-8 CrossRefGoogle Scholar
  22. Frid A, Dill L (2002) Human-caused disturbance stimuli as a form of predation risk. Conserv Ecol 6(1)Google Scholar
  23. Gill JA, Norris K, Sutherland WJ (2001) Why behavioural responses may not reflect the population consequences of human disturbance. Biol Conserv 97(2):265–268. doi:10.1016/S0006-3207(00)00002-1 CrossRefGoogle Scholar
  24. Hebblewhite M, Merrill EH (2009) Trade-offs between predation risk and forage differ between migrant strategies in a migratory ungulate. Ecology 90(12):3445–3454. doi:10.1890/08-2090.1 PubMedCrossRefGoogle Scholar
  25. Heithaus MR, Dill LM (2002) Food availability and tiger shark predation risk influence bottlenose dolphin habitat use. Ecology 83(2):480–491. doi:10.2307/2680029 CrossRefGoogle Scholar
  26. Horne JS, Garton EO, Krone SM, Lewis JS (2007) Analyzing animal movements using Brownian bridges. Ecology 88(9):2354–2363. doi:10.1890/06-0957.1 PubMedCrossRefGoogle Scholar
  27. James ARC, Stuart-Smith AK (2000) Distribution of caribou and wolves in relation to linear corridors. J Wildlife Manage 64(1):154–159. doi:10.2307/3802985 CrossRefGoogle Scholar
  28. Johnson AR, Wiens JA, Milne BT, Crist TO (1992) Animal movements and population-dynamics in heterogeneous landscapes. Landscape Ecol 7(1):63–75. doi:10.1007/Bf02573958 CrossRefGoogle Scholar
  29. Kareiva PM, Shigesada N (1983) Analyzing insect movement as a correlated random-walk. Oecologia 56(2–3):234–238. doi:10.1007/Bf00379695 CrossRefGoogle Scholar
  30. Klein DR (2000) Arctic grazing systems and industrial development: can we minimize conflicts? Polar Res 19(1):91–98CrossRefGoogle Scholar
  31. Knight RL, Kawashima JY (1993) Responses of raven and red-tailed hawk populations to linear right-of-ways. J Wildlife Manage 57(2):266–271. doi:10.2307/3809423 CrossRefGoogle Scholar
  32. Kuijper DPJ, Cromsigt JPGM, Churski M, Adam B, Jedrzejewska B, Jedrzejewski W (2009) Do ungulates preferentially feed in forest gaps in European temperate forest? Forest Ecol Manag 258(7):1528–1535. doi:10.1016/j.foreco.2009.07.010 CrossRefGoogle Scholar
  33. Lambertucci SA, Speziale KL, Rogers TE, Morales JM (2009) How do roads affect the habitat use of an assemblage of scavenging raptors. Biodivers Conserv 18(8):2063–2074. doi:10.1007/s10531-008-9573-3 CrossRefGoogle Scholar
  34. Leblond M, Dussault C, Ouellet JP (2013) Avoidance of roads by large herbivores and its relation to disturbance intensity. J Zool 289(1):32–40. doi:10.1111/j.1469-7998.2012.00959.x CrossRefGoogle Scholar
  35. Montgomery RA, Vucetich JA, Peterson RO, Roloff GJ, Millenbah KF (2013) The influence of winter severity, predation and senescence on moose habitat use. J Anim Ecol 82(2):301–309. doi:10.1111/1365-2656.12000 PubMedCrossRefGoogle Scholar
  36. Murphy SM, Curatolo JA (1987) Activity budgets and movement rates of caribou encountering pipelines, roads, and traffic in Northern Alaska. Can J Zool 65(10):2483–2490CrossRefGoogle Scholar
  37. Olsson MPO, Widen P (2008) Effects of highway fencing and wildlife crossings on moose Alces alces movements and space use in southwestern Sweden. Wildlife Biol 14(1):111–117. doi:10.2981/0909-6396(2008)14[111:Eohfaw]2.0.Co;2 CrossRefGoogle Scholar
  38. Otis DL, White GC (1999) Autocorrelation of location estimates and the analysis of radiotracking data. J Wildlife Manage 63(3):1039–1044. doi:10.2307/3802819 CrossRefGoogle Scholar
  39. Panzacchi M, Van Moorter B, Strand O (2013) A road in the middle of one of the last wild reindeer migration routes in Norway: crossing behaviour and threats to conservation. Rangifer 33 Special Issue No. 21:15-26.Google Scholar
  40. Polfus JL, Hebblewhite M, Heinemeyer K (2011) Identifying indirect habitat loss and avoidance of human infrastructure by northern mountain woodland caribou. Biol Conserv 144(11):2637–2646. doi:10.1016/j.biocon.2011.07.023 CrossRefGoogle Scholar
  41. R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: http://www.R-project.org/.
  42. Reimers E, Roed KH, Colman JE (2012) Persistence of vigilance and flight response behaviour in wild reindeer with varying domestic ancestry. J Evol Biol 25(8):1543–1554. doi:10.1111/j.1420-9101.2012.02538 PubMedCrossRefGoogle Scholar
  43. Rowcliffe JM, Carbone C, Kays R, Kranstauber B, Jansen PA (2012) Bias in estimating animal travel distance: the effect of sampling frequency. Methods Ecol Evol 3(4):653–662. doi:10.1111/j.2041-210X.2012.00197.x CrossRefGoogle Scholar
  44. Small MF, Hunter ML (1988) Forest fragmentation and avian nest predation in forested landscapes. Oecologia 76(1):62–64Google Scholar
  45. Smith MB, Aborn DA, Gaudin TJ, Tucker JC (2008) Mammalian predator distribution around a transmission line. Southeast Nat 7(2):289–300. doi:10.1656/1528-7092(2008)7[289:Mpdaat]2.0.Co;2 CrossRefGoogle Scholar
  46. Stankowich T (2008) Ungulate flight responses to human disturbance: a review and meta-analysis. Biol Conserv 141(9):2159–2173. doi:10.1016/j.biocon.2008.06.026 CrossRefGoogle Scholar
  47. Tomkiewicz SM, Fuller MR, Kie JG, Bates KK (2010) Global positioning system and associated technologies in animal behaviour and ecological research. Philos T R Soc B 365(1550):2163–2176. doi:10.1098/rstb.2010.0090 CrossRefGoogle Scholar
  48. Van Moorter B, Visscher D, Herfindal I, Basille M, Mysterud A (2013) Inferring behavioural mechanisms in habitat selection studies – getting the null-hypothesis right for functional and familiarity responses. Ecography 36(3):323–330. doi:10.1111/j.1600-0587.2012.07291 Google Scholar
  49. With KA, Gardner RH, Turner MG (1997) Landscape connectivity and population distributions in heterogeneous environments. Oikos 78(1):151–169. doi:10.2307/3545811 CrossRefGoogle Scholar
  50. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sindre Eftestøl
    • 1
  • Diress Tsegaye
    • 1
    • 2
  • Ivar Herfindal
    • 3
  • Kjetil Flydal
    • 1
  • Jonathan E. Colman
    • 1
    • 2
  1. 1.Department of BiosciencesUniversity of OsloOsloNorway
  2. 2.Department of Ecology and Natural Resource ManagementNorwegian University of Life SciencesÅsNorway
  3. 3.Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations