Skip to main content

Advertisement

Log in

There is no place like home: high homing rate and increased mortality after translocation of a small mammal

  • Original Paper
  • Published:
European Journal of Wildlife Research Aims and scope Submit manuscript

Abstract

Animal translocation is a popular tool in wildlife management. It is frequently used to solve human–animal conflicts and recently has been applied as a mitigation tool when animals inhabit land desired for development. However, its success is uncertain and involves risks. In order to provide useful information to wildlife managers about the effect of translocation distance on animal movement behavior and survival, we translocated 40 Long-haired field mice (Abrothrix longipilis) at different distances from their territories (0–1,300 m) in central Chile and recorded the location and survival of each mouse over 3 days. Translocated animals showed low release site fidelity and traveled two- to four-fold longer distances than the nontranslocated group. Only mice translocated at shorter distances (100 m) oriented their movement toward their origin site and had a high probability of homing (80 %). There were threshold distances from after which homing and traveling strongly decreased. All individuals released close to their capture site (≤100 m) remained alive, while mortality reached 22 % at longer translocation distances, principally as a result of fighting between rodents. Therefore, long translocation distances prevented short-term homing and decreased traveled distances (a desirable outcome), but risks associated with conspecific encounters need to be avoided. Because mice showed a high motivation to explore surroundings, it is advisable to release animals in sites with alternative places to colonize. Our results emphasize the need for a strong justification in wildlife translocation projects and the development of alternative techniques to improve animal welfare and conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agrarian and Livestock Service (SAG) (2004) Medidas de mitigación de impactos ambientales en fauna silvestre, 1st edn. Santiago, Chile

    Google Scholar 

  • Anstee S, Armstrong K (2001) The effect of familiarity and mound condition in translocations of the western pebble-mound mouse, Pseudomys chapmani, in the Pilbara region of Western Australia. Wildl Res 28(2):135–140. doi:10.1071/wr99081

    Article  Google Scholar 

  • August PV, Ayvazian SG, Anderson JGT (1989) Magnetic orientation in a small mammal, Peromyscus leucopus. J Mammal 70(1):1–9

    Article  Google Scholar 

  • Bakker VJ, Van Vuren DH (2004) Gap-crossing decisions by the red squirrel, a forest-dependent small mammal. Conserv Biol 18(3):689–697

    Article  Google Scholar 

  • Batschelet E (1981) Circular statistics in biology. Academic, New York

    Google Scholar 

  • Belant JL (1992) Homing of relocated raccoons, Procyon lotor. Can Field Nat 106(3):382–384

    Google Scholar 

  • Bélisle M, Desrochers A, Fortin MJ (2001) Influence of forest cover on the movements of forest birds: a homing experiment. Ecology 82(7):1893–1904

    Google Scholar 

  • Blanchard BM, Knight RR (1995) Biological consequences of relocating grizzly bears in the Yellowstone ecosystem. J Wildl Manage 59(3):560–565

    Article  Google Scholar 

  • Bovet J (1984) Strategies of homing behavior in the red squirrel, Tamiasciurus hudsonicus. Behav Ecol Sociobiol 16(1):81–88

    Article  Google Scholar 

  • Bovet J (1991) Route-based visual information has limited effect on the homing performance of red squirrels, Tamiasciurus hudsonicus. Ethology 87(1–2):59–65

    Google Scholar 

  • Bowman J, Jaeger JAG, Fahrig L (2002) Dispersal distance of mammals is proportional to home range size. Ecology 83(7):2049–2055

    Article  Google Scholar 

  • Bradley EH, Pletscher DH, Bangs EE, Kunkel KE, Smith DW, Mack CM, Meier TJ, Fontaine JA, Niemeyer CC, Jimenez MD (2005) Evaluating wolf translocation as a nonlethal method to reduce livestock conflicts in the northwestern United States. Conserv Biol 19:1498–1508

    Article  Google Scholar 

  • Bright PW, Morris PA (1994) Animal translocation for conservation: performance of dormice in relation to release methods, origin and season. J Appl Ecol 31(4):699–708. doi:10.2307/2404160

    Article  Google Scholar 

  • Brown SK, Hull JM, Updike DR, Fain SR, Ernest HB (2009) Black bear population genetics in California: signatures of population structure, competitive release, and historical translocation. J Mammal 90(5):1066–1074

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretical approach, 2nd edn. Springer, New York

    Google Scholar 

  • Bustamante RO, Oporto A, Moraga S, de la Barrera F, Sepúlveda G, Moreira D (2012) Informe sobre mitigación de impacto ambiental en fauna silvestre: Rescate y relocalización. Universidad de Chile - Servicio Agrícola y Ganadero, Santiago, Chile

    Google Scholar 

  • Calcagno V, de Mazancourt C (2010) glmulti: an R package for easy automated model selection with (generalized) linear models. J Stat Softw 34(12):1–29

    Google Scholar 

  • Conover M (2002) Resolving human–wildlife conflicts: the science of damage management. Lewis publishers, Florida, USA

    Google Scholar 

  • Cromwell JA, Warren RJ, Henderson DW (1999) Live-capture and small-scale relocation of urban deer on Hilton Head Island, South Carolina. Wildl Soc Bull 27(4):1025–1031

    Google Scholar 

  • Cunningham AA (1996) Disease risks of wildlife translocations. Conserv Biol 10(2):349–353

    Article  Google Scholar 

  • Daszak P (2000) Emerging infectious diseases of wildlife: threats to biodiversity and human health. Science 287(5459):1756

    Google Scholar 

  • Di Castri F, Hajek ER (1976) Bioclimatología de Chile. Ediciones Universidad Católica de Chile, Santiago, Chile

    Google Scholar 

  • Dickens MJ, Delehanty DJ, Romero LM (2010) Stress: an inevitable component of animal translocation. Biol Conserv 143(6):1329–1341. doi:10.1016/j.biocon.2010.02.032

    Article  Google Scholar 

  • Edgar PW, Griffiths RA, Foster JP (2005) Evaluation of translocation as a tool for mitigating development threats to great crested newts (Triturus cristatus) in England, 1990–2001. Biol Conserv 122(1):45–52. doi:10.1016/j.biocon.2004.05.022

    Article  Google Scholar 

  • Edmands S, Timmerman CC (2003) Modeling factors affecting the severity of outbreeding depression. Conserv Biol 17(3):883–892

    Article  Google Scholar 

  • Ellis-Quinn BA, Simon CA (1989) Homing behavior of the lizard Sceloporus jarrovi. J Herpetol 23(2):146–152

    Article  Google Scholar 

  • Estades CF, Temple SA (1999) Deciduous-forest bird communities in a fragmented landscape dominated by exotic pine plantations. Ecol Appl 9(2):573–585

    Article  Google Scholar 

  • Fischer J, Lindenmayer DB (2000) An assessment of the published results of animal relocations. Biol Conserv 96(1):1–11. doi:10.1016/s0006-3207(00)00048-3

    Article  Google Scholar 

  • Fisler GF (1962) Homing in the California vole, Microtus californicus. Am Midl Nat 68:357–368

    Article  Google Scholar 

  • Goheen JR, Swihart RK, Gehring TM, Miller MS (2003) Forces structuring tree squirrel communities in landscapes fragmented by agriculture: species differences in perceptions of forest connectivity and carrying capacity. Oikos 102(1):95–103

    Article  Google Scholar 

  • Griffith B, Scott JM, Carpenter JW, Reed C (1989) Translocation as a species conservation tool: status and strategy. Science 245(4917):477–480. doi:10.1126/science.245.4917.477

    Article  PubMed  CAS  Google Scholar 

  • Griffiths RA (2004) Mismatches between conservation science and practice. Trends Ecol Evol 19(11):564–565. doi:10.1016/j.tree.2004.09.008

    Article  Google Scholar 

  • Griffiths SP (2003) Homing behaviour of intertidal rockpool fishes in south-eastern New South Wales, Australia. Aust J Zool 51(4):387–398. doi:10.1071/ZO02049

    Article  Google Scholar 

  • Griffo JV (1960) A Study of homing in the cotton mouse, Peromyscus gossypinus. Anat Rec 138(3):354

    Google Scholar 

  • Groombridge JJ, Massey JG, Bruch JC, Malcolm T, Brosius CN, Okada MM, Sparklin B, Fretz JS, Vanderwerf EA (2004) An attempt to recover the Po'ouli by translocation and an appraisal of recovery strategy for bird species of extreme rarity. Biol Conserv 118(3):365–375. doi:10.1016/j.biocon.2003.06.005

    Article  Google Scholar 

  • Hardman B, Moro D (2006) Optimising reintroduction success by delayed dispersal: is the release protocol important for hare-wallabies? Biol Conserv 128(3):403–411. doi:10.1016/j.biocon.2005.10.006

    Article  Google Scholar 

  • Hester JM, Price SJ, Dorcas ME (2008) Effects of relocation on movements and home ranges of eastern box turtles. J Wildl Manage 72(3):772–777. doi:10.2193/2007-049

    Article  Google Scholar 

  • Hodara K, Busch M (2006) Return to preferred habitats (edges) as a function of distance in Akodon azarae (Rodentia, Muridae) in cropfield-edge systems of central Argentina. J Ethol 24(2):141–145. doi:10.1007/s10164-005-0173-3

    Article  Google Scholar 

  • Hoegh-Guldberg O et al (2008) Assisted colonization and rapid climate change. Science 321(5887):345–346. doi:10.1126/science.1157897

    Article  PubMed  CAS  Google Scholar 

  • Huang WS, Pike DA (2011) Determinants of homing in nest-guarding females: balancing risks while travelling through unfamiliar landscapes. Anim Behav 82(2):263–270. doi:10.1016/j.anbehav.2011.04.023

    Article  Google Scholar 

  • IUCN (1987) The IUCN position statement on translocation of living organisms: introductions, reintroductions and re-stocking. Gland, Switzerland, IUCN Council

    Google Scholar 

  • IUCN (1998) Guidelines for re-introductions. IUCN/SSC Re-introduction Specialist Group, Gland, Switzerland and Cambridge, UK

    Google Scholar 

  • Jones C, Mcshea W, Conroy M, Kunz T (1996) Capturing mammals. In: Wilson DE, Cole FR, Nichols JD, Rudran R, Foster MS (eds) Measuring and monitoring biological diversity—standard methods for mammals. Smithsonian Institution Press, Washington, pp 115–155

    Google Scholar 

  • Joslin JK (1977) Rodent long distance orientation ("homing"). Adv Ecol Res 10:63–89

    Article  Google Scholar 

  • King WB (2012) R tutorials. Coastal Carolina University. http://ww2.coastal.edu/kingw/statistics/R-tutorials/index.html. Accessed Sep 2012

  • Landriault LJ, Brown GS, Hamr J, Mallory FF (2009) Age, sex and relocation distance as predictors of return for relocated nuisance black bears Ursus americanus in Ontario, Canada. Wildlife Biol 15(2):155–164

    Article  Google Scholar 

  • Lapenta MJ, de Oliveira PP, Nogueira-Neto P (2007) Daily activity period, home range and sleeping sites of golden lion tamarins (Leontopithecus rosalia) translocated to the Uniao Biological Reserve, RJ-Brazil. Mammalia 71(3):131–137. doi:10.1515/mamm.2007.027

    Article  Google Scholar 

  • Linnell JDC, Aanes R, Swenson JE, Odden J, Smith ME (1997) Translocation of carnivores as a method for managing problem animals: a review. Biodivers Conserv 6(9):1245–1257

    Article  Google Scholar 

  • Madison DM, Shoyp CR (1970) Homing behavior, orientation, and home range of salamanders tagged with Ta-182. Science 168(3938):1484–1487

    Article  PubMed  CAS  Google Scholar 

  • Mann G (1978) Los pequeños mamíferos de Chile. Gayana Zoología 40:1–342

    Google Scholar 

  • Mawdsley JR, O'Malley R, Ojima DS (2009) A review of climate-change adaptation strategies for wildlife management and biodiversity conservation. Conserv Biol 23(5):1080–1089. doi:10.1111/j.1523-1739.2009.01264.x

    Article  PubMed  Google Scholar 

  • Mech SG, Zollner PA (2002) Using body size to predict perceptual range. Oikos 98(1):47–52

    Article  Google Scholar 

  • Muñoz-Pedreros A (1992) Ecología del ensamble de micromamíferos en un agroecosistema forestal de Chile central: una comparación latitudinal. Rev Chil Hist Nat 65:417–428

    Google Scholar 

  • Muñoz-Pedreros A (2000) Orden Rodentia. In: Muñoz-Pedreros A, Yáñez J (eds) Mamíferos de Chile. Ediciones CEA, Valdivia, pp 73–126

    Google Scholar 

  • Muñoz-Pedreros A, Yáñez J (2009) Mamíferos de Chile. Ediciones CEA, Valdivia, Chile

  • Newsome AE, Cowan PE, Ives PM (1982) Homing by wild house-mice displaced with or without the opportunity to see. Aust Wildlife Res 9(3):421–426

    Article  Google Scholar 

  • Nolet BA, Broekhuizen S, Dorrestein GM, Rienks KM (1997) Infectious diseases as main causes of mortality to beavers Castor fiber after translocation to the Netherlands. J Zool 241:35–42

    Article  Google Scholar 

  • Ostfeld RS, Manson R (1996) Long-distance homing in meadow voles, Microtus pennsylvanicus. J Mammal 77(3):870–873

    Article  Google Scholar 

  • Powell RA, Mitchell MS (2012) What is a home range? J Mammal 93(4):948–958

    Article  Google Scholar 

  • Development Core Team R (2011) The R Stats package. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Republica de Chile (1998) Reglamento de la Ley de Caza. D.S. N° 5. Diario Oficial, 7 de diciembre de 1998. Ministerio de Agricultura, Santiago, Chile

    Google Scholar 

  • Robinson WL, Falls JB (1965) A study of homing of meadow mice. Am Midl Nat 73(1):188–224

    Article  Google Scholar 

  • Rogers LL (1986) Effects of translocation distance on frequency of return by adult black bears. Wildl Soc Bull 14(1):76–80

    Google Scholar 

  • Saavedra B (2003) Disminución en tamaño poblacional y asimetría fluctuante en Octodon bridgesi (Rodentia), taxón especialista de hábitat. University of Chile, Santiago, Chile

    Google Scholar 

  • San Martín J, Donoso C (1996) Estructura florística e impacto antrópico en el bosque maulino de Chile. In: Armesto JJ, Villagrán C, Arroyo MK (eds) Ecología de los bosques nativos chilenos. Editorial Universitaria, Santiago, pp 153–168

    Google Scholar 

  • Seddon PJ, Armstrong DP, Maloney RF (2007) Developing the science of reintroduction biology. Conserv Biol 21(2):303–312

    Article  PubMed  Google Scholar 

  • Seddon PJ, Strauss WM, Innes J (2012) Animal translocations: what are they and why do we do them? In: Ewen JG, Armstrong DP, Parker KA, Seddon PJ (eds) Reintroduction biology: integrating science and management. Wiley, Chichester, UK. doi:10.1002/9781444355833.ch1

    Google Scholar 

  • Seguinot V, Maurer R, Etienne AS (1993) Dead reckoning in a small mammal: the evaluation of distance. J Comp Physiol A 173(1):103–113

    Article  PubMed  CAS  Google Scholar 

  • Shier DM, Swaisgood RR (2012) Fitness costs of neighborhood disruption in translocations of a solitary mammal. Conserv Biol 26(1):116–123. doi:10.1111/j.1523-1739.2011.01748.x

    Article  PubMed  Google Scholar 

  • Short J (2009) The characteristics and success of vertebrate translocations within Australia. Department of Agriculture, Fisheries and Forestry, Canberra, Australia

    Google Scholar 

  • Smith MJ, Betts MG, Forbes GJ, Kehler DG, Bourgeois MC, Flemming SP (2011) Independent effects of connectivity predict homing success by northern flying squirrel in a forest mosaic. Landsc Ecol 26(5):709–721. doi:10.1007/s10980-011-9595-1

    Article  Google Scholar 

  • Stamps JA, Swaisgood RR (2007) Someplace like home: experience, habitat selection and conservation biology. Appl Anim Behav Sci 102(3–4):392–409. doi:10.1016/j.applanim.2006.05.038

    Article  Google Scholar 

  • Teixeira CP, De Azevedo CS, Mendl M, Cipreste CF, Young RJ (2007) Revisiting translocation and reintroduction programmes: the importance of considering stress. Anim Behav 73:1–13. doi:10.1016/j.anbehav.2006.06.002

    Article  Google Scholar 

  • Tsoar A, Nathan R, Bartan Y, Vyssotski A, Dell'Omo G, Ulanovsky N (2011) Large-scale navigational map in a mammal. P Natl Acad Sci USA 108(37):E718–E724. doi:10.1073/pnas.1107365108

    Article  CAS  Google Scholar 

  • Van Zant JL, Wooten MC (2003) Translocation of Choctawhatchee beach mice (Peromyscus polionotus allophrys): hard lessons learned. Biol Conserv 112(3):405–413

    Article  Google Scholar 

  • Van Vuren D, Kuenzi AJ, Loredo I, Leider AL, Morrison ML (1997) Translocation as a nonlethal alternative for managing California ground squirrels. J Wildl Manage 61(2):351–359

    Article  Google Scholar 

  • Vicens N, Bosch J (2000) Nest site orientation and relocation of populations of the orchard pollinator Osmia cornuta (Hymenoptera : Megachilidae). Environ Entomol 29(1):69–75

    Article  Google Scholar 

  • Vie JC, Richard-Hansen C, Fournier-Chambrillon C (2001) Abundance, use of space, and activity patterns of white-faced sakis (Pithecia pithecia) in French Guiana. Am J Primatol 55(4):203–221. doi:10.1002/ajp.1055

    Article  PubMed  CAS  Google Scholar 

  • Watters JV, Meehan CL (2007) Different strokes: can managing behavioral types increase post-release success? Appl Anim Behav Sci 102(3–4):364–379. doi:10.1016/j.applanim.2006.05.036

    Article  Google Scholar 

  • Wear BJ, Eastridge R, Clark JD (2005) Factors affecting settling, survival, and viability of black bears reintroduced to Felsenthal National Wildlife Refuge, Arkansas. Wildl Soc Bull 33(4):1363–1374

    Article  Google Scholar 

  • Wolf CM, Griffith B, Reed C, Temple SA (1996) Avian and mammalian translocations: update and reanalysis of 1987 survey data. Conserv Biol 10(4):1142–1154

    Article  Google Scholar 

  • Zar JH (1984) Biostatistical analysis. Prentice-Hall, New Jersey

    Google Scholar 

  • Zollner PA, Lima SL (1997) Landscape-level perceptual abilities in white-footed mice: perceptual range and the detection of forested habitat. Oikos 80(1):51–60

    Article  Google Scholar 

Download references

Acknowledgments

We thank R. Thomson, S. Uribe, D. Mandaçovic, V. Latorre, R. Urbina, and H. Salinas who helped with fieldwork. J. Wood and W. Blanchard provided us advice with some statistical analysis. A. Kuenzi, B. Scheele, P. Gibbons, and three anonymous reviewers made important suggestion to a previous manuscript. This study was conducted under capture permit 2944 from Agrarian and Livestock Service (SAG), Chile granted to CFE. NRV was supported by a CONICYT grant during her MSc studies. Funding for this study was provided by FIA project number PI-C-2003-1-F-051 (CFE) and FONDECYT project number 1080463 (CFE). Forestal MASISA S.A. kindly granted us access to their property and provided us with cartography layers and some logistic support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nélida R. Villaseñor.

Additional information

Communicated by C. Gortazar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villaseñor, N.R., Escobar, M.A.H. & Estades, C.F. There is no place like home: high homing rate and increased mortality after translocation of a small mammal. Eur J Wildl Res 59, 749–760 (2013). https://doi.org/10.1007/s10344-013-0730-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10344-013-0730-y

Keywords

Navigation