Advertisement

European Journal of Wildlife Research

, Volume 59, Issue 5, pp 749–760 | Cite as

There is no place like home: high homing rate and increased mortality after translocation of a small mammal

  • Nélida R. Villaseñor
  • Martín A. H. Escobar
  • Cristián F. Estades
Original Paper

Abstract

Animal translocation is a popular tool in wildlife management. It is frequently used to solve human–animal conflicts and recently has been applied as a mitigation tool when animals inhabit land desired for development. However, its success is uncertain and involves risks. In order to provide useful information to wildlife managers about the effect of translocation distance on animal movement behavior and survival, we translocated 40 Long-haired field mice (Abrothrix longipilis) at different distances from their territories (0–1,300 m) in central Chile and recorded the location and survival of each mouse over 3 days. Translocated animals showed low release site fidelity and traveled two- to four-fold longer distances than the nontranslocated group. Only mice translocated at shorter distances (100 m) oriented their movement toward their origin site and had a high probability of homing (80 %). There were threshold distances from after which homing and traveling strongly decreased. All individuals released close to their capture site (≤100 m) remained alive, while mortality reached 22 % at longer translocation distances, principally as a result of fighting between rodents. Therefore, long translocation distances prevented short-term homing and decreased traveled distances (a desirable outcome), but risks associated with conspecific encounters need to be avoided. Because mice showed a high motivation to explore surroundings, it is advisable to release animals in sites with alternative places to colonize. Our results emphasize the need for a strong justification in wildlife translocation projects and the development of alternative techniques to improve animal welfare and conservation.

Keywords

Abrothrix longipilis Movement behavior Radiotelemetry Relocation Rodent Survival Wildlife management 

Notes

Acknowledgments

We thank R. Thomson, S. Uribe, D. Mandaçovic, V. Latorre, R. Urbina, and H. Salinas who helped with fieldwork. J. Wood and W. Blanchard provided us advice with some statistical analysis. A. Kuenzi, B. Scheele, P. Gibbons, and three anonymous reviewers made important suggestion to a previous manuscript. This study was conducted under capture permit 2944 from Agrarian and Livestock Service (SAG), Chile granted to CFE. NRV was supported by a CONICYT grant during her MSc studies. Funding for this study was provided by FIA project number PI-C-2003-1-F-051 (CFE) and FONDECYT project number 1080463 (CFE). Forestal MASISA S.A. kindly granted us access to their property and provided us with cartography layers and some logistic support.

References

  1. Agrarian and Livestock Service (SAG) (2004) Medidas de mitigación de impactos ambientales en fauna silvestre, 1st edn. Santiago, ChileGoogle Scholar
  2. Anstee S, Armstrong K (2001) The effect of familiarity and mound condition in translocations of the western pebble-mound mouse, Pseudomys chapmani, in the Pilbara region of Western Australia. Wildl Res 28(2):135–140. doi: 10.1071/wr99081 CrossRefGoogle Scholar
  3. August PV, Ayvazian SG, Anderson JGT (1989) Magnetic orientation in a small mammal, Peromyscus leucopus. J Mammal 70(1):1–9CrossRefGoogle Scholar
  4. Bakker VJ, Van Vuren DH (2004) Gap-crossing decisions by the red squirrel, a forest-dependent small mammal. Conserv Biol 18(3):689–697CrossRefGoogle Scholar
  5. Batschelet E (1981) Circular statistics in biology. Academic, New YorkGoogle Scholar
  6. Belant JL (1992) Homing of relocated raccoons, Procyon lotor. Can Field Nat 106(3):382–384Google Scholar
  7. Bélisle M, Desrochers A, Fortin MJ (2001) Influence of forest cover on the movements of forest birds: a homing experiment. Ecology 82(7):1893–1904Google Scholar
  8. Blanchard BM, Knight RR (1995) Biological consequences of relocating grizzly bears in the Yellowstone ecosystem. J Wildl Manage 59(3):560–565CrossRefGoogle Scholar
  9. Bovet J (1984) Strategies of homing behavior in the red squirrel, Tamiasciurus hudsonicus. Behav Ecol Sociobiol 16(1):81–88CrossRefGoogle Scholar
  10. Bovet J (1991) Route-based visual information has limited effect on the homing performance of red squirrels, Tamiasciurus hudsonicus. Ethology 87(1–2):59–65Google Scholar
  11. Bowman J, Jaeger JAG, Fahrig L (2002) Dispersal distance of mammals is proportional to home range size. Ecology 83(7):2049–2055CrossRefGoogle Scholar
  12. Bradley EH, Pletscher DH, Bangs EE, Kunkel KE, Smith DW, Mack CM, Meier TJ, Fontaine JA, Niemeyer CC, Jimenez MD (2005) Evaluating wolf translocation as a nonlethal method to reduce livestock conflicts in the northwestern United States. Conserv Biol 19:1498–1508CrossRefGoogle Scholar
  13. Bright PW, Morris PA (1994) Animal translocation for conservation: performance of dormice in relation to release methods, origin and season. J Appl Ecol 31(4):699–708. doi: 10.2307/2404160 CrossRefGoogle Scholar
  14. Brown SK, Hull JM, Updike DR, Fain SR, Ernest HB (2009) Black bear population genetics in California: signatures of population structure, competitive release, and historical translocation. J Mammal 90(5):1066–1074CrossRefGoogle Scholar
  15. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretical approach, 2nd edn. Springer, New YorkGoogle Scholar
  16. Bustamante RO, Oporto A, Moraga S, de la Barrera F, Sepúlveda G, Moreira D (2012) Informe sobre mitigación de impacto ambiental en fauna silvestre: Rescate y relocalización. Universidad de Chile - Servicio Agrícola y Ganadero, Santiago, ChileGoogle Scholar
  17. Calcagno V, de Mazancourt C (2010) glmulti: an R package for easy automated model selection with (generalized) linear models. J Stat Softw 34(12):1–29Google Scholar
  18. Conover M (2002) Resolving human–wildlife conflicts: the science of damage management. Lewis publishers, Florida, USAGoogle Scholar
  19. Cromwell JA, Warren RJ, Henderson DW (1999) Live-capture and small-scale relocation of urban deer on Hilton Head Island, South Carolina. Wildl Soc Bull 27(4):1025–1031Google Scholar
  20. Cunningham AA (1996) Disease risks of wildlife translocations. Conserv Biol 10(2):349–353CrossRefGoogle Scholar
  21. Daszak P (2000) Emerging infectious diseases of wildlife: threats to biodiversity and human health. Science 287(5459):1756Google Scholar
  22. Di Castri F, Hajek ER (1976) Bioclimatología de Chile. Ediciones Universidad Católica de Chile, Santiago, ChileGoogle Scholar
  23. Dickens MJ, Delehanty DJ, Romero LM (2010) Stress: an inevitable component of animal translocation. Biol Conserv 143(6):1329–1341. doi: 10.1016/j.biocon.2010.02.032 CrossRefGoogle Scholar
  24. Edgar PW, Griffiths RA, Foster JP (2005) Evaluation of translocation as a tool for mitigating development threats to great crested newts (Triturus cristatus) in England, 1990–2001. Biol Conserv 122(1):45–52. doi: 10.1016/j.biocon.2004.05.022 CrossRefGoogle Scholar
  25. Edmands S, Timmerman CC (2003) Modeling factors affecting the severity of outbreeding depression. Conserv Biol 17(3):883–892CrossRefGoogle Scholar
  26. Ellis-Quinn BA, Simon CA (1989) Homing behavior of the lizard Sceloporus jarrovi. J Herpetol 23(2):146–152CrossRefGoogle Scholar
  27. Estades CF, Temple SA (1999) Deciduous-forest bird communities in a fragmented landscape dominated by exotic pine plantations. Ecol Appl 9(2):573–585CrossRefGoogle Scholar
  28. Fischer J, Lindenmayer DB (2000) An assessment of the published results of animal relocations. Biol Conserv 96(1):1–11. doi: 10.1016/s0006-3207(00)00048-3 CrossRefGoogle Scholar
  29. Fisler GF (1962) Homing in the California vole, Microtus californicus. Am Midl Nat 68:357–368CrossRefGoogle Scholar
  30. Goheen JR, Swihart RK, Gehring TM, Miller MS (2003) Forces structuring tree squirrel communities in landscapes fragmented by agriculture: species differences in perceptions of forest connectivity and carrying capacity. Oikos 102(1):95–103CrossRefGoogle Scholar
  31. Griffith B, Scott JM, Carpenter JW, Reed C (1989) Translocation as a species conservation tool: status and strategy. Science 245(4917):477–480. doi: 10.1126/science.245.4917.477 PubMedCrossRefGoogle Scholar
  32. Griffiths RA (2004) Mismatches between conservation science and practice. Trends Ecol Evol 19(11):564–565. doi: 10.1016/j.tree.2004.09.008 CrossRefGoogle Scholar
  33. Griffiths SP (2003) Homing behaviour of intertidal rockpool fishes in south-eastern New South Wales, Australia. Aust J Zool 51(4):387–398. doi: 10.1071/ZO02049 CrossRefGoogle Scholar
  34. Griffo JV (1960) A Study of homing in the cotton mouse, Peromyscus gossypinus. Anat Rec 138(3):354Google Scholar
  35. Groombridge JJ, Massey JG, Bruch JC, Malcolm T, Brosius CN, Okada MM, Sparklin B, Fretz JS, Vanderwerf EA (2004) An attempt to recover the Po'ouli by translocation and an appraisal of recovery strategy for bird species of extreme rarity. Biol Conserv 118(3):365–375. doi: 10.1016/j.biocon.2003.06.005 CrossRefGoogle Scholar
  36. Hardman B, Moro D (2006) Optimising reintroduction success by delayed dispersal: is the release protocol important for hare-wallabies? Biol Conserv 128(3):403–411. doi: 10.1016/j.biocon.2005.10.006 CrossRefGoogle Scholar
  37. Hester JM, Price SJ, Dorcas ME (2008) Effects of relocation on movements and home ranges of eastern box turtles. J Wildl Manage 72(3):772–777. doi: 10.2193/2007-049 CrossRefGoogle Scholar
  38. Hodara K, Busch M (2006) Return to preferred habitats (edges) as a function of distance in Akodon azarae (Rodentia, Muridae) in cropfield-edge systems of central Argentina. J Ethol 24(2):141–145. doi: 10.1007/s10164-005-0173-3 CrossRefGoogle Scholar
  39. Hoegh-Guldberg O et al (2008) Assisted colonization and rapid climate change. Science 321(5887):345–346. doi: 10.1126/science.1157897 PubMedCrossRefGoogle Scholar
  40. Huang WS, Pike DA (2011) Determinants of homing in nest-guarding females: balancing risks while travelling through unfamiliar landscapes. Anim Behav 82(2):263–270. doi: 10.1016/j.anbehav.2011.04.023 CrossRefGoogle Scholar
  41. IUCN (1987) The IUCN position statement on translocation of living organisms: introductions, reintroductions and re-stocking. Gland, Switzerland, IUCN CouncilGoogle Scholar
  42. IUCN (1998) Guidelines for re-introductions. IUCN/SSC Re-introduction Specialist Group, Gland, Switzerland and Cambridge, UKGoogle Scholar
  43. Jones C, Mcshea W, Conroy M, Kunz T (1996) Capturing mammals. In: Wilson DE, Cole FR, Nichols JD, Rudran R, Foster MS (eds) Measuring and monitoring biological diversity—standard methods for mammals. Smithsonian Institution Press, Washington, pp 115–155Google Scholar
  44. Joslin JK (1977) Rodent long distance orientation ("homing"). Adv Ecol Res 10:63–89CrossRefGoogle Scholar
  45. King WB (2012) R tutorials. Coastal Carolina University. http://ww2.coastal.edu/kingw/statistics/R-tutorials/index.html. Accessed Sep 2012
  46. Landriault LJ, Brown GS, Hamr J, Mallory FF (2009) Age, sex and relocation distance as predictors of return for relocated nuisance black bears Ursus americanus in Ontario, Canada. Wildlife Biol 15(2):155–164CrossRefGoogle Scholar
  47. Lapenta MJ, de Oliveira PP, Nogueira-Neto P (2007) Daily activity period, home range and sleeping sites of golden lion tamarins (Leontopithecus rosalia) translocated to the Uniao Biological Reserve, RJ-Brazil. Mammalia 71(3):131–137. doi: 10.1515/mamm.2007.027 CrossRefGoogle Scholar
  48. Linnell JDC, Aanes R, Swenson JE, Odden J, Smith ME (1997) Translocation of carnivores as a method for managing problem animals: a review. Biodivers Conserv 6(9):1245–1257CrossRefGoogle Scholar
  49. Madison DM, Shoyp CR (1970) Homing behavior, orientation, and home range of salamanders tagged with Ta-182. Science 168(3938):1484–1487PubMedCrossRefGoogle Scholar
  50. Mann G (1978) Los pequeños mamíferos de Chile. Gayana Zoología 40:1–342Google Scholar
  51. Mawdsley JR, O'Malley R, Ojima DS (2009) A review of climate-change adaptation strategies for wildlife management and biodiversity conservation. Conserv Biol 23(5):1080–1089. doi: 10.1111/j.1523-1739.2009.01264.x PubMedCrossRefGoogle Scholar
  52. Mech SG, Zollner PA (2002) Using body size to predict perceptual range. Oikos 98(1):47–52CrossRefGoogle Scholar
  53. Muñoz-Pedreros A (1992) Ecología del ensamble de micromamíferos en un agroecosistema forestal de Chile central: una comparación latitudinal. Rev Chil Hist Nat 65:417–428Google Scholar
  54. Muñoz-Pedreros A (2000) Orden Rodentia. In: Muñoz-Pedreros A, Yáñez J (eds) Mamíferos de Chile. Ediciones CEA, Valdivia, pp 73–126Google Scholar
  55. Muñoz-Pedreros A, Yáñez J (2009) Mamíferos de Chile. Ediciones CEA, Valdivia, ChileGoogle Scholar
  56. Newsome AE, Cowan PE, Ives PM (1982) Homing by wild house-mice displaced with or without the opportunity to see. Aust Wildlife Res 9(3):421–426CrossRefGoogle Scholar
  57. Nolet BA, Broekhuizen S, Dorrestein GM, Rienks KM (1997) Infectious diseases as main causes of mortality to beavers Castor fiber after translocation to the Netherlands. J Zool 241:35–42CrossRefGoogle Scholar
  58. Ostfeld RS, Manson R (1996) Long-distance homing in meadow voles, Microtus pennsylvanicus. J Mammal 77(3):870–873CrossRefGoogle Scholar
  59. Powell RA, Mitchell MS (2012) What is a home range? J Mammal 93(4):948–958CrossRefGoogle Scholar
  60. Development Core Team R (2011) The R Stats package. R Foundation for Statistical Computing, ViennaGoogle Scholar
  61. Republica de Chile (1998) Reglamento de la Ley de Caza. D.S. N° 5. Diario Oficial, 7 de diciembre de 1998. Ministerio de Agricultura, Santiago, ChileGoogle Scholar
  62. Robinson WL, Falls JB (1965) A study of homing of meadow mice. Am Midl Nat 73(1):188–224CrossRefGoogle Scholar
  63. Rogers LL (1986) Effects of translocation distance on frequency of return by adult black bears. Wildl Soc Bull 14(1):76–80Google Scholar
  64. Saavedra B (2003) Disminución en tamaño poblacional y asimetría fluctuante en Octodon bridgesi (Rodentia), taxón especialista de hábitat. University of Chile, Santiago, ChileGoogle Scholar
  65. San Martín J, Donoso C (1996) Estructura florística e impacto antrópico en el bosque maulino de Chile. In: Armesto JJ, Villagrán C, Arroyo MK (eds) Ecología de los bosques nativos chilenos. Editorial Universitaria, Santiago, pp 153–168Google Scholar
  66. Seddon PJ, Armstrong DP, Maloney RF (2007) Developing the science of reintroduction biology. Conserv Biol 21(2):303–312PubMedCrossRefGoogle Scholar
  67. Seddon PJ, Strauss WM, Innes J (2012) Animal translocations: what are they and why do we do them? In: Ewen JG, Armstrong DP, Parker KA, Seddon PJ (eds) Reintroduction biology: integrating science and management. Wiley, Chichester, UK. doi: 10.1002/9781444355833.ch1 Google Scholar
  68. Seguinot V, Maurer R, Etienne AS (1993) Dead reckoning in a small mammal: the evaluation of distance. J Comp Physiol A 173(1):103–113PubMedCrossRefGoogle Scholar
  69. Shier DM, Swaisgood RR (2012) Fitness costs of neighborhood disruption in translocations of a solitary mammal. Conserv Biol 26(1):116–123. doi: 10.1111/j.1523-1739.2011.01748.x PubMedCrossRefGoogle Scholar
  70. Short J (2009) The characteristics and success of vertebrate translocations within Australia. Department of Agriculture, Fisheries and Forestry, Canberra, AustraliaGoogle Scholar
  71. Smith MJ, Betts MG, Forbes GJ, Kehler DG, Bourgeois MC, Flemming SP (2011) Independent effects of connectivity predict homing success by northern flying squirrel in a forest mosaic. Landsc Ecol 26(5):709–721. doi: 10.1007/s10980-011-9595-1 CrossRefGoogle Scholar
  72. Stamps JA, Swaisgood RR (2007) Someplace like home: experience, habitat selection and conservation biology. Appl Anim Behav Sci 102(3–4):392–409. doi: 10.1016/j.applanim.2006.05.038 CrossRefGoogle Scholar
  73. Teixeira CP, De Azevedo CS, Mendl M, Cipreste CF, Young RJ (2007) Revisiting translocation and reintroduction programmes: the importance of considering stress. Anim Behav 73:1–13. doi: 10.1016/j.anbehav.2006.06.002 CrossRefGoogle Scholar
  74. Tsoar A, Nathan R, Bartan Y, Vyssotski A, Dell'Omo G, Ulanovsky N (2011) Large-scale navigational map in a mammal. P Natl Acad Sci USA 108(37):E718–E724. doi: 10.1073/pnas.1107365108 CrossRefGoogle Scholar
  75. Van Zant JL, Wooten MC (2003) Translocation of Choctawhatchee beach mice (Peromyscus polionotus allophrys): hard lessons learned. Biol Conserv 112(3):405–413CrossRefGoogle Scholar
  76. Van Vuren D, Kuenzi AJ, Loredo I, Leider AL, Morrison ML (1997) Translocation as a nonlethal alternative for managing California ground squirrels. J Wildl Manage 61(2):351–359CrossRefGoogle Scholar
  77. Vicens N, Bosch J (2000) Nest site orientation and relocation of populations of the orchard pollinator Osmia cornuta (Hymenoptera : Megachilidae). Environ Entomol 29(1):69–75CrossRefGoogle Scholar
  78. Vie JC, Richard-Hansen C, Fournier-Chambrillon C (2001) Abundance, use of space, and activity patterns of white-faced sakis (Pithecia pithecia) in French Guiana. Am J Primatol 55(4):203–221. doi: 10.1002/ajp.1055 PubMedCrossRefGoogle Scholar
  79. Watters JV, Meehan CL (2007) Different strokes: can managing behavioral types increase post-release success? Appl Anim Behav Sci 102(3–4):364–379. doi: 10.1016/j.applanim.2006.05.036 CrossRefGoogle Scholar
  80. Wear BJ, Eastridge R, Clark JD (2005) Factors affecting settling, survival, and viability of black bears reintroduced to Felsenthal National Wildlife Refuge, Arkansas. Wildl Soc Bull 33(4):1363–1374CrossRefGoogle Scholar
  81. Wolf CM, Griffith B, Reed C, Temple SA (1996) Avian and mammalian translocations: update and reanalysis of 1987 survey data. Conserv Biol 10(4):1142–1154CrossRefGoogle Scholar
  82. Zar JH (1984) Biostatistical analysis. Prentice-Hall, New JerseyGoogle Scholar
  83. Zollner PA, Lima SL (1997) Landscape-level perceptual abilities in white-footed mice: perceptual range and the detection of forested habitat. Oikos 80(1):51–60CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nélida R. Villaseñor
    • 1
    • 2
  • Martín A. H. Escobar
    • 1
  • Cristián F. Estades
    • 1
  1. 1.Wildlife Ecology Laboratory, School of Forest Sciences and Nature ConservationUniversidad de ChileLa PintanaChile
  2. 2.The Fenner School of Environment and SocietyAustralian National UniversityCanberraAustralia

Personalised recommendations