Skip to main content
Log in

Forestomach pH in hunted roe deer (Capreolus capreolus) in relation to forestomach region, time of measurement and supplemental feeding and comparison among wild ruminant species

European Journal of Wildlife Research Aims and scope Submit manuscript

Abstract

There is a debate whether supplemental feeding of deer bears the risk of inducing health problems, in particular acidosis. Here, the pH values of forestomach contents of free-ranging roe deer (Capreolus capreolus) shot in areas with and without supplemental winter feeding were compared. pH was similar in the dorsal and ventral rumen, but lower at these sites than in the Atrium ruminis, where it was again lower than in the reticulum; this pattern corresponds to expectations based on differences in the presence of saliva at the different sites of the forestomach. pH was lower with increasing time that elapsed between death of the animal and measuring pH in unsupplemented animals and was lower in unsupplemented animals in May/June than later in the year. Animals with supplemental winter feeding had significantly lower rumen pH (5.5) than animals without food supplementation (5.7). These data suggest that supplemental feeding of roe deer has the potential to lower forestomach pH. Although pH values measured in supplemented animals in this study would be considered indicative of rumen acidosis in domestic cattle, they are within the range previously measured in various free-ranging Odocoilid species, including roe deer; were of a similar magnitude as the May/June values of unsupplemented roe deer in this study; and must be considered with respect to potentially rapid declines in pH between death of the animal and pH measurement. Given methodological problems, analyses of literature data from free-ranging wild ruminants provide little evidence for a systematic variation of rumen pH with feeding type and body mass, but lead to the hypothesis that some New World cervids, including the roe deer, might either naturally have lower pH values than other ruminants or rumen contents whose pH drops rapidly after death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Baker DL, Hobbs NT (1985) Emergency feeding of mule deer during winter: tests of a supplemental ration. J Wildl Manag 49:934–942

    Article  Google Scholar 

  • Bartoskewitz ML, Hewitt DG, Pitts JS, Bryant FC (2003) Supplemental feed use by free-ranging white-tailed deer in southern Texas. Wildl Soc Bull 31:1218–1228

    Google Scholar 

  • Behrens H, Gantner M, Hiepe T (2001) Lehrbuch der Schafkrankheiten, 4th edn. Parey Verlag, Berlin

    Google Scholar 

  • Booyse DG, Dehority BA (2011) Protozoa and digestive tract parameters of the impala. Onderstepoort J Vet Res 78:1–5

    Google Scholar 

  • Bostedt H, Dedié K (1996) Schaf- und Ziegenkrankheiten, 2nd edn. Verlag Eugen Ulmer, Stuttgart

    Google Scholar 

  • Burnham KP, Anderson DR (2001) Kullback–Leibler information as a basis for strong inference in ecological studies. Wildl Res 28:111–119

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Butler EA, Jensen WF, Johnson RE, Scott JM (2008) Grain overload and secondary effects as potential mortality factors of moose in Northern Dakota. Alces 44:73–79

    Google Scholar 

  • Clauss M, Fritz J, Bayer D, Hummel J, Streich WJ, Südekum K-H, Hatt J-M (2009a) Physical characteristics of rumen contents in two small ruminants of different feeding type, the mouflon (Ovis ammon musimon) and the roe deer (Capreolus capreolus). Zoology 112:195–205

    Article  PubMed  Google Scholar 

  • Clauss M, Fritz J, Bayer D, Nygren K, Hammer S, Hatt J-M, Südekum K-H, Hummel J (2009b) Physical characteristics of rumen contents in four large ruminants of different feeding type, the addax (Addax nasomaculatus), bison (Bison bison), red deer (Cervus elaphus) and moose (Alces alces). Comp Biochem Physiol A 152:398–406

    Article  Google Scholar 

  • Clauss M, Hofmann RR, Fickel J, Streich WJ, Hummel J (2009c) The intraruminal papillation gradient in wild ruminants of different feeding types: implications for rumen physiology. J Morphol 270:929–942

    Article  PubMed  Google Scholar 

  • Clauss M, Hofmann RR, Streich WJ, Fickel J, Hummel J (2010a) Convergence in the macroscopic anatomy of the reticulum in wild ruminant species of different feeding types and a new resulting hypothesis on reticular function. J Zool 281:26–38

    Article  Google Scholar 

  • Clauss M, Hume ID, Hummel J (2010b) Evolutionary adaptations of ruminants and their potential relevance for modern production systems. Animal 4:979–992

    Article  PubMed  CAS  Google Scholar 

  • Clauss M, Kaiser T, Hummel J (2008) The morphophysiological adaptations of browsing and grazing mammals. In: Gordon IJ, Prins HHT (eds) The ecology of browsing and grazing. Springer, Heidelberg, pp 47–88

    Chapter  Google Scholar 

  • Clauss M, Kienzle E, Hatt J-M (2003) Feeding practice in captive wild ruminants: peculiarities in the nutrition of browsers/concentrate selectors and intermediate feeders. A review. In: Fidgett A, Clauss M, Ganslosser U, Hatt J-M, Nijboer J (eds) Zoo animal nutrition, vol 2. Filander, Fuerth, Germany, pp 27–52

    Google Scholar 

  • Clauss M, Lunt N, Ortmann S, Plowman A, Codron D, Hummel J (2011a) Fluid and particle passage in three duiker species. Eur J Wildl Res 57:143–148

    Article  Google Scholar 

  • Clauss M, Müller K, Fickel J, Streich WJ, Hatt J-M, Südekum K-H (2011b) Macroecology of the host determines microecology of endobionts: protozoal faunas vary with wild ruminant feeding type and body mass. J Zool 283:169–185

    Article  Google Scholar 

  • Clemens ET, Maloiy GMO (1983) Digestive physiology of East African wild ruminants. Comp Biochem Physiol A 76:319–333

    Article  PubMed  CAS  Google Scholar 

  • Codron D, Lee-Thorp JA, Sponheimer M, Codron J, de Ruiter D, Brink JS (2007) Significance of diet type and diet quality for ecological diversity of African ungulates. J Anim Ecol 76:526–537

    Article  PubMed  Google Scholar 

  • de la Fuente G, Belanche A, Abecia L, Dehority BA, Fondevila M (2009) Rumen protozoal diversity in the Spanish ibex (Capra pyrenaica hispanica) as compared with domestic goats (Capra hircus). Eur J Protistol 45:112–120

    Article  PubMed  Google Scholar 

  • Dirksen G, Gründer HD, Stöber M (2006) Innere Medizin und Chirurgie des Rindes, 5th edn. Parey Verlag, Berlin

    Google Scholar 

  • Djordjević M, Popović Z, Grubić G (2006) Chemical composition of the rumen contents in roe deer (Capreolus capreolus) as potential quality indicator of their feeding. J Agric Sci 51:133–140

    Article  Google Scholar 

  • Drescher-Kaden U (1981) Coparative studies about food selection of chamois and red deer with special regard to the rumen microbes and the fermentation in the reticulorumen. Adv Anim Physiol Anim Nutr 12:1–108

    Google Scholar 

  • Duffield T, Plaizier JC, Fairfield A, Bagg R, Vessie G, Dick P, Wilson J, Aramini J, McBride B (2004) Comparison of techniques for measurement of rumen pH in lactating dairy cows. J Dairy Sci 87:59–66

    Article  PubMed  CAS  Google Scholar 

  • Enzinger W, Hartfiel W (1998) The effect of increased energy and protein contents in the feed on the fermentation products, fauna and mucous membranes of the rumens of wild ruminants (fallow deer, roe deer) in comparison to domestic ruminants (sheep/goats). Z Jagdwiss 44:201–220

    Google Scholar 

  • Gasaway WC, Coady JW (1974) Review of energy requirements and rumen fermentation in moose and other ruminants. Nat Can 101:227–262

    Google Scholar 

  • Giesecke D, Van Gylswyk NO (1975) A study of feeding types and certain rumen functions in six species of South African wild ruminants. J Agric Sci 85:75–83

    Article  Google Scholar 

  • Gordon IJ, Illius AW (1994) The functional significance of the browser–grazer dichotomy in African ruminants. Oecologia 98:167–175

    Article  Google Scholar 

  • Hennig U, Büttner J, Richter H, Hennig J, Ditrich G (1988) Ernährungsphysiologische Unterschiede zwischen Reh- und Damwild. In: 5. Wissenschaftliches Kollogquium "Wildbiologie und Wildbewirtschaftung" (Leipzig, 5./6. April 1988). Karl-Marx-Universität Leipzig, Technische Universität Dresden, pp 288–310

  • Hobson PN, Mann SO, Summers R, Staines BW (1975/76) Rumen function in red deer, hill sheep and reindeer in the Scottish Highlands. Proc R Soc Edinburgh 75:181–198

  • Hofmann RR (1985) Digestive physiology of deer - their morphophysiological specialisation and adaptation. R Soc N Zeal Bull 22:393–407

  • Hofmann RR (1989) Evolutionary steps of ecophysiological adaptation and diversification of ruminants: a comparative view of their digestive system. Oecologia 78:443–457

    Article  Google Scholar 

  • Hofmann RR, Nygren K (1992) Ruminal mucosa as indicator of nutritional status in wild and captive moose. Alces Suppl 1:77–83

    Google Scholar 

  • Hoppe PP (1977) Rumen fermentation and body weight in African ruminants. In: Peterle TJ (ed) 13th Congress of Game Biology. The Wildlife Society, Washington, pp 141–150

    Google Scholar 

  • Hoppe PP (1984) Strategies of digestion in African herbivores. In: Gilchrist FMC, Mackie RI (eds) Herbivore nutrition in the subtropics and tropics. Science, Craighall, pp 222–243

    Google Scholar 

  • Hoppe PP, Qvortrup SA, Woodford MH (1977a) Rumen fermentation and food selection in East African sheep, goats, Thomson's gazelle, Grant's gazelle and impala. J Agric Sci 89:129–135

    Article  Google Scholar 

  • Hoppe PP, Qvortrup SA, Woodford MH (1977b) Rumen fermentation and food selection in East African Zebu cattle, wildebeest, Coke's hartebeest and topi. J Zool 181:1–9

    Article  Google Scholar 

  • Hoppe PP, Van Hoven W, von Engelhardt W, Prins RA, Lankhorst A, Gwynne MD (1983) Pregastric and caecal fermentation in dikdik (Madoqua kirki) and suni (Nesotragus moschatus). Comp Biochem Physiol A 75:517–524

    Article  Google Scholar 

  • Hummel J, Südekum K-H, Bayer D, Ortmann S, Hatt J-M, Streich WJ, Clauss M (2009) Physical characteristics of reticuloruminal contents of cattle in relation to forage type and time after feeding. J Anim Physiol Anim Nutr 93:209–220

    Article  CAS  Google Scholar 

  • Ichimura Y, Yamano H, Takano T, Koike S, Kobayashi Y, Ozaki N, Suzuki M, Okada H, Yamanaka M (2004) Rumen microbes and fermentation of wild sika deer on the shiretoko peninsula of Hokkaido Island, Japan. Ecol Res 19:389–395

    Article  Google Scholar 

  • Ito A, Imai S, Ogimoto K (1993) Rumen ciliates of Ezo deer (Cervus nippon yesoensis) with the morphological comparison with those of cattle. J Vet Med Sci 55(1):93–98

    Article  PubMed  CAS  Google Scholar 

  • Jones RJ, Meyer JHF, Bechaz FM, Stolzt MA, Palmer B, van der Merwe G (2001) Comparison of rumen fluid from South African game species and from sheep to digest tanniniferous browse. Aust J Agric Res 52:453–460

    Article  Google Scholar 

  • Kleen JL, Cannizzo C (2012) Incidence, prevalence and impact of SARA in dairy herds. Anim Feed Sci Technol 172:4–8

    Article  Google Scholar 

  • Kreulen DA, Hoppe PP (1979) Diurnal trends and relationship to forage quality of ruminal volatile fatty acid concentration, pH and osmolarity in wildebeest on dry range in Tanzania. Afr J Ecol 17:53–63

    Article  Google Scholar 

  • Li M, Penner G, Hernandez-Sanabria E, Oba M, Guan L (2009) Effects of sampling location and time, and host animal on assessment of bacterial diversity and fermentation parameters in the bovine rumen. J Appl Microbiol 107:1924–1934

    Article  PubMed  CAS  Google Scholar 

  • Li S, Qin R (1992) Volatile fatty acids, pH, dry matter, and lactic acid of the rumen contents of sika deer. In: Brown R (ed) The biology of deer. Springer Verlag, New York, pp 450–452

    Chapter  Google Scholar 

  • Maloiy GMO, Clemens CT, Kamau JMZ (1982) Aspects of digestion and in vitro rumen fermentation rate in six species of East African wild ruminants. J Zool 197:345–353

    Google Scholar 

  • Marholdt F, Hofmann RR (1991) Makro- und mikroskopische Veränderungen der Pansenschleimhaut von Zoo- und Wildwiederkäuern - ein Befundbericht mit Hinweisen zur artgerechten Fütterung. Arbeitstagung der Zootierärzte im deutschsprachigen Raum 11:19–34

    Google Scholar 

  • Mgasa MN, Arnbjerg J (1993) Influence of diet on forestomach structure and occurence of digital disease in adult goats. Small Rum Res 10:63–73

    Article  Google Scholar 

  • Mgasa MN, Mbassa GK (1988) Tolerance of goats to experimental grain engorgement and intraruminal lactic acid injection. Vet Res Commun 12:143–147

    Article  PubMed  CAS  Google Scholar 

  • Odendaal PB (1976) Some aspects of the ecology of bushbuck (Tragelaphus scriptus) in the Southern Cape. MSc Thesis, University of Stellenbosch, South Africa

  • Ouellet JP, Crête M, Maltais J, Pelletier C, Huot J (2001) Emergency feeding of white-tailed deer: test of three feeds. J Wildl Manag 65:129–136

    Article  Google Scholar 

  • Owen-Smith N (1988) Megaherbivores—the influence of very large body size on ecology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Peterson C, Messmer TA (2007) Effects of winter-feeding on mule deer in Northern Utah. J Wildl Manag 71:1440–1445

    Article  Google Scholar 

  • Popović Z, Đorđević N, Grubić G, Stojanović B (2009) Estimation of the quality of the nutrition of roe deer based on chemical composition of the rumen content. Acta Vet (Beograd) 59:653–663

    Article  Google Scholar 

  • Prins RA, Geelen MJH (1971) Rumen characteristics of red deer, fallow deer and roe deer. J Wildl Manag 35:673–680

    Article  Google Scholar 

  • Putman RJ, Staines BW (2004) Supplementary feeding of wild red deer Cervus elaphus in Europe and North America: justifications, feeding practice and effectiveness. Mamm Rev 34:285–306

    Article  Google Scholar 

  • Radostits OM, Gay CC, Hinchcliff KW, Constable PD (2007) Veterinary medicine: a textbook of the diseases of cattle, horses, sheep, pigs and goats, 10th edn. Saunders Elsevier, Philadelphia

    Google Scholar 

  • Rehbinder C, Ciszuk P (1985) Supplemental feeding of roe deer with late harvested hay. A pilot study. Rangifer 5:6–14

    Google Scholar 

  • Schmidt KT, Hoi H (2002) Supplemental feeding reduces natural selection in juvenile red deer. Ecography 25:265–272

    Article  Google Scholar 

  • Schoonveld GG, Nagy JG, Bailey JA (1974) Capability of mule deer to utilize fibrous alfalfa diets. J Wildl Manag 38:823–829

    Article  Google Scholar 

  • Short HL, Medin DE, Anderson AE (1966) Seasonal variations in volatile fatty acids in the rumen of mule deer. J Wildl Manag 30:466–470

    Article  CAS  Google Scholar 

  • Short HL, Remmenga EE, Boyd CE (1969a) Variations in ruminoreticular contents of white-tailed deer. J Wildl Manag 33:187–191

    Article  Google Scholar 

  • Short HL, Segelquist CA, Goodrum PD, Boyd CE (1969b) Rumino-reticular characteristics of deer on food of two types. J Wildl Manag 33:380–383

    Article  Google Scholar 

  • Smith BP (1996) Large animal internal medicine, 2nd edn. Mosby, St. Louis

    Google Scholar 

  • Statsoft_Inc (2007) STATISTICA. Version 8.0 [computer program]. StatSoft Inc, Tulsa

    Google Scholar 

  • Stevens CE, Hume ID (1998) Contributions of microbes in vertebrate gastrointestinal tract to production and conservation of nutrients. Physiol Rev 78:393–427

    PubMed  CAS  Google Scholar 

  • Sugár L (1983) Occurence of lactacidosis in hunt-killed roe deer. Verh Ber Erkr Zootiere 25:409–410

    Google Scholar 

  • Tafaj M, Junck B, Maulbetsch A, Steingass H, Piepho HP, Drochner W (2004) Digesta characteristics of dorsal, middle and ventral rumen of cows fed with different hay qualities and concentrate levels. Arch Anim Nutr 58:325–342

    Article  PubMed  CAS  Google Scholar 

  • Towne G, Nagaraja TG, Cochran RC (1989) Ruminal microbial populations and fermentation characteristics in bison and cattle fed high- and low-quality forage. Microbial Ecol 17:311–316

    Article  Google Scholar 

  • Tung K-C, Chou S-R, Lee W-M, Wang J-S, Imai S (1995) Rumen ciliate fauna of Formosan sambar deer (Cervus unicolor) in Taiwan. Taiwan J Vet Med Anim Husb 65:347–354

    Google Scholar 

  • Tung K-C, Wang J-S, Chou S-R, Shyu C-L, Chang J-P, Imai S (1996) Rumen ciliate fauna of Formosan sika deer (Cervus nippon taiouanus) in Taiwan. Taiwan J Vet Med Anim Husb 66:259–264

    Google Scholar 

  • Van Hoven W (1980) Rumen fermentation and methane production in the African buffalo in the Kruger National Park. Koedoe 23:45–55

    Google Scholar 

  • Van Soest PJ (1994) Nutritional ecology of the ruminant, 2nd edn. Cornell University Press, Ithaca

    Google Scholar 

  • Wobeser G, Runge W (1975) Rumen overload and rumenitis in white-tailed deer. J Wildl Manag 39:596–600

    Article  Google Scholar 

  • Woodbury MR, Berezoski J, Heigh J (2005) A retrospective study of the causes of morbidity and mortality in farmed elk (Cervus elaphus). Can Vet J 46:1108–1121

    PubMed  Google Scholar 

  • Woolf A, Kradel D (1977) Occurrence of rumenitis in a supplementary fed white-tailed deer herd. J Wildl Dis 13:281–285

    PubMed  CAS  Google Scholar 

  • Woolfe A (1977) Occurrence of rumenitis in a supplementary fed white-tailed deer herd. J Wildl Dis 13:281–285

    Google Scholar 

Download references

Acknowledgments

We thank Dominik Dachs, Mathias Gatter, Ronald Knapp and Martin Weber for their support in measuring pH in the field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Clauss.

Additional information

Communicated by C. Gortazar

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1.41 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritz, J., Hofer, K., Hofer, E. et al. Forestomach pH in hunted roe deer (Capreolus capreolus) in relation to forestomach region, time of measurement and supplemental feeding and comparison among wild ruminant species. Eur J Wildl Res 59, 505–517 (2013). https://doi.org/10.1007/s10344-013-0698-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10344-013-0698-7

Keywords

Navigation