Skip to main content

Ecological correlates of a tick-borne disease, Anaplasma phagocytophilum, in moose in southern Norway

Abstract

As the distribution and abundance of ticks increase, so do the risks of tick-borne diseases. Anaplasma phagocytophilum, transmitted by Ixodes spp. ticks, is a widespread tick-borne infection causing tick-borne fever (TBF) in domestic ruminants and human granulocytic anaplasmosis. However, the role of wildlife in its epidemiology is poorly understood. Evidence of infection has been detected in wild cervids, but the pathogenicity and ecological consequences are unknown. We conducted a serological study of moose (Alces alces) in two populations in southern Norway, one where TBF was endemic (Telemark) and the other where sheep ticks (Ixodes ricinus) were essentially absent (Hedmark). Seroprevalence to A. phagocytophilum antibodies was 79 and 0 %, respectively. In Telemark, seroprevalence was significantly higher among females that calved successfully (85 %) than among others (50 %). Body mass and winter mass change were unrelated to serostatus. Relative abundance of questing ticks in Telemark was highest in deciduous forest and lowest in mature coniferous forest and higher at easterly aspects and altitudes below 350 m. Habitat factors associated with high tick abundance were risk factors for seropositivity among moose. Our findings were consistent with anaplasmosis causing a persistent subclinical infection in moose without population-level effects. Further work is needed to establish the importance of moose as a reservoir for the disease in sympatric domestic livestock.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Alberdi MP, Walker AR, Urquhart KA (2000) Field evidence that roe deer (Capreolus capreolus) are a natural host for Ehrlichia phagocytophila. Epidemiol Infect 124:315–323

    PubMed  Article  CAS  Google Scholar 

  • Albon SD, Stien A, Irvine RJ (2002) The role of parasites in the dynamics of a reindeer population. Proc R Soc B 269:1625–1632

    PubMed  Article  CAS  Google Scholar 

  • Bown KJ, Begon M, Bennett M, Woldehiwet Z, Ogden NH (2003) Seasonal dynamics of Anaplasma phagocytophila in a rodent-tick (Ixodes trianguliceps) system, United Kingdom. Emerg Infect Dis 9:63–70

    PubMed  Article  Google Scholar 

  • Cederlund G, Okarma H (1988) Home range and habitat use of adult female moose. J Wildl Manage 52:336–343

    Article  Google Scholar 

  • Daniel M, Danielová V, Kříž B, Jirsa A, Nožička J (2003) Shift of the tick Ixodes ricinus and tick-borne encephalitis to higher altitudes in Central Europe. Eur J Clin Microbiol Infect Dis 22:327–328

    PubMed  CAS  Google Scholar 

  • Gaillard J-M, Festa-Bianchet M, Yoccoz NG, Loison A, Toïgo C (2000) Temporal variation in fitness components and population dynamics of large herbivores. Ann Rev Ecol Syst 31:367–393

    Article  Google Scholar 

  • Gilbert L (2010) Altitudinal patterns of tick and host abundance: a potential role for climate change in regulating tick-borne diseases? Oecologia 162:217–225

    PubMed  Article  Google Scholar 

  • Gray JS, Dautel H, Estrada-Peña A, Kahl O, Lindgren E (2009) Effects of climate change on ticks and tick-borne diseases in Europe. Interdiscip Perspect Infect Dis 2009:593232

    PubMed  CAS  Google Scholar 

  • Grøtan V, Sæther B-E, Lillegård M, Solberg EJ, Engen S (2009) Geographical variation in the influence of density dependence and climate on the recruitment of Norwegian moose. Oecologia 161:685–695

    PubMed  Article  Google Scholar 

  • Grøva L, Olesen I, Steinshamn H, Stuen S (2011) Prevalence of Anaplasma phagocytophilum infection and effect on lamb growth. Acta Vet Scand 53:30

    PubMed  Article  Google Scholar 

  • Gunn A, Irvine RJ (2003) Subclinical parasitism and ruminant foraging strategies—a review. Wildl Soc Bull 31:117–126

    Google Scholar 

  • Herfindal I, Solberg EJ, Sæther BE, Høgda KA, Andersen R (2006) Environmental phenology and geographical gradients in moose body mass. Oecologia 150:213–224

    PubMed  Article  Google Scholar 

  • Hillyard PD (1996) Ticks of North-West Europe. Synopsis of the British Fauna (New Series). R.S.K. Barnes & J.H. Crothers (eds.), vol 58. The Natural Historical Museum, London

  • Jaenson TGT, Lindgren E (2011) The range of Ixodes ricinus and the risk of contracting lyme borreliosis will increase northwards when the vegetation period becomes longer. Ticks Tick-Borne Dis 2:44–49

    PubMed  Article  Google Scholar 

  • Jenkins A, Handeland K, Stuen S, Schouls L, Van de Pol I, Meen R-T, Kristiansen B-E (2001) Ehrlichiosis in a moose calf in Norway. J Wildl Dis 37:201–203

    PubMed  CAS  Google Scholar 

  • Jore S, Viljugrein H, Hofshagen M, Brun-Hansen H, Kristoffersen AB, Nygård K, Brun E, Ottesen P, Sævik BK, Ytrehus B (2011) Multi-source analysis reveals latitudinal and altitudinal shifts in range of Ixodes ricinus at its northern distribution limit. Parasite Vector 4:84

    Article  Google Scholar 

  • Lempereur L, Lebrun M, Cuvelier P, Sépult G, Caron Y, Saegerman C, Shiels B, Losson B (2011) Longitudinal field study on bovine Babesia spp. and Anaplasma phagocytophilum infections during a grazing season in Belgium. Parasitol Res 110:1525–1530

    PubMed  Article  Google Scholar 

  • Lindström A, Jaenson TGT (2003) Distribution of the common tick, Ixodes ricinus (Acari: Ixodidae), in different vegetation types in southern Sweden. J Med Entomol 40:375–378

    PubMed  Article  Google Scholar 

  • Liz JS, Sumner JW, Pfister K, Brossard M (2002) PCR detection and serological evidence of granulocytic ehrlichial infection in roe deer (Capreolus capreolus) and chamois (Rupicapra rupicapra). J Clin Microbiol 40:892–897

    PubMed  Article  Google Scholar 

  • Magnarelli LA, Ijdo JW, Stafford KC, Fikrig E (1999) Infections of granulocytic ehrlichiae and Borrelia burgdorferi in white-tailed deer in Connecticut. J Wild Dis 35:266–274

    CAS  Google Scholar 

  • Mehl R (1983) The distribution and host relations of Norwegian ticks (Acari, Ixodides). Fauna Norvegica Series B 30:46–51

    Google Scholar 

  • Milner JM, Storaas T, Van Beest FM, Lien G (2012) Sluttrapport for Elgfôringsprosjektet. Oppdragsrapport nr. 1-2012. Hedmark University College, Norway. (In Norwegian with English summary)

  • Milner JM, van Beest FM, Solberg EJ, Storaas T (2013) Reproductive success and failure—the role of winter body mass in reproductive allocation in Norwegian moose. Oecologia. doi:10.1007/s00442-012-2547-x

  • Mysterud A (2000) Diet overlap among ruminants in Fennoscandia. Oecologia 124:130–137

    Article  Google Scholar 

  • Norwegian Agricultural Authority (2012) Number of adult sheep by county. https://www.slf.dep.no/no/statistikk/utvikling/antall-dyr/voksne-sau. Accessed 30 Oct 2012

  • Ogden NH, Casey ANJ, French NP, Bown KJ, Adams JDW, Woldehiwet Z (2002) Natural Ehrlichia phagocytophila transmission coefficients from sheep ‘carriers’ to Ixodes ricinus ticks vary with the numbers of feeding ticks. Parasitol 124:127–136

    CAS  Google Scholar 

  • Robinson MT, Shaw SE, Morgan ER (2009) Anaplasma phagocytophilum infection in a multi-species deer community in the New Forest, England. Eur J Wildl Res 55:439–442

    Article  Google Scholar 

  • Rolandsen CM, Solberg EJ, Heim M, Holmstrøm F, Solem MI, Sæther B-E (2008) Accuracy and repeatability of moose (Alces alces) age as estimated from dental cement layers. Eur J Wildl Res 54:6–14

    Article  Google Scholar 

  • Rosef O, Paulauskas A, Radzijevskaja J (2009) Prevalence of Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum in questing Ixodes ricinus ticks in relation to the density of wild cervids. Acta Vet Scand 51:47

    PubMed  Article  Google Scholar 

  • Scharlemann JPW, Johnson PJ, Smith AA, Macdonald DW, Randolph SE (2008) Trends in ixodid tick abundance and distribution in Great Britain. Med Vet Entomol 22:238–247

    PubMed  Article  CAS  Google Scholar 

  • Stefanidesova K, Kocianova E, Boldis V, Kostanova Z, Kanka P, Nemethova D, Spitalska E (2008) Evidence of Anaplasma phagocytophilum and Rickettsia helvetica infection in free-ranging ungulates in Central Slovakia. Eur J Wildl Res 54:519–524

    Article  Google Scholar 

  • Stuen S (1996) Experimental tick-borne fever infection in reindeer (Rangifer tarandus tarandus). Vet Rec 138:595–596

    PubMed  Article  CAS  Google Scholar 

  • Stuen S (2007) Anaplasma phagocytophilum—the most widespread tick-borne infection in animals in Europe. Vet Res Commun 31(suppl 1):79–84

    Google Scholar 

  • Stuen S, Djuve R, Bergström K (2001a) Persistence of granulocytic Ehrlichia infection during wintertime in two sheep flocks in Norway. Acta Veterinaria Scandinavica 42:347–353

    PubMed  Article  CAS  Google Scholar 

  • Stuen S, Handeland K, Frammarsvik T, Bergström K (2001b) Experimental Ehrlichia phagocytophila infection in red deer (Cervus elaphus). Vet Rec 149:390–392

    PubMed  Article  CAS  Google Scholar 

  • Stuen S, Åkerstedt J, Bergström K, Handeland K (2002) Antibodies to granulocytic Ehrlichia in moose, red deer, and roe deer in Norway. J Wildl Dis 38:1–6

    PubMed  Google Scholar 

  • Stuen S, Moum T, Bernhoft A, Vene S (2006) A paretic condition in a Anaplasma phagocytophilum infected roe deer calf. J Wildl Dis 42:170–174

    PubMed  Google Scholar 

  • Stuen S, Grøva L, Granquist EG, Sandstedt K, Olesen I, Steinshamn H (2011) A comparative study of clinical manifestations, haematological and serological responses after experimental infection with Anaplasma phagocytophilum in two Norwegian sheep breeds. Acta Vet Scand 53:8

    PubMed  Article  Google Scholar 

  • van Beest FM, Mysterud A, Loe LE, Milner JM (2010) Forage quantity, quality and depletion as scale-dependent mechanisms driving habitat selection of a large browsing herbivore. J Anim Ecol 79:910–922

    PubMed  Google Scholar 

  • van Beest FM, Rivrud IM, Loe LE, Milner JM, Mysterud A (2011) What determines variation in home range size across spatiotemporal scales in a large browsing herbivore? J Anim Ecol 80:771–785

    PubMed  Article  Google Scholar 

  • Veronesi F, Galuppi R, Tampieri MP, Bonoli C, Mammoli R, Piergili Fioretti D (2010) Prevalence of Anaplasma phagocytophilum in fallow deer (Dama dama) and feeding ticks from an Italy preserve. Res Vet Sci 90:40–43

    PubMed  Article  Google Scholar 

  • Walker AR, Alberdi MP, Urquhart KA, Rose H (2001) Risk factors in habitats of the tick Ixodes ricinus influencing human exposure to Ehrlichia phagocytophila bacteria. Med Vet Entomol 15:40–49

    PubMed  Article  Google Scholar 

  • Woldehiwet Z (2008) Immune evasion and immunosuppression by Anaplasma phagocytophilum, the causative agent of tick-borne fever of ruminants and human granulocytic anaplasmosis. Vet J 175:37–44

    PubMed  Article  CAS  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

We thank Fritzöe Skoger and Løvenskiold-Fossum in Telemark and Stor-Elvdal Landowners’ Association in Hedmark for their collaboration, and, in particular, Bent Thorkildsen, Staffan Klasson and Knut B. Nicolaysen. Thanks to Tommy Vestøl, Kjell Åge Fredheim and others who helped collect field data. We thank Bjørnar Ytrehus for useful discussions and two anonymous reviewers for their constructive comments. Funding was provided by the Norwegian Research Council (173868/AREAL), Innovation Norway, Telemark County, Hedmark County and municipalities in Telemark, Vestfold and Hedmark. All work conformed to the legal requirements set by ‘Forsøksdyrutvalget’ (Animal Research Committee) in Norway.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jos M. Milner.

Additional information

Communicated by C. Gortázar

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Milner, J.M., van Beest, F.M. Ecological correlates of a tick-borne disease, Anaplasma phagocytophilum, in moose in southern Norway. Eur J Wildl Res 59, 399–406 (2013). https://doi.org/10.1007/s10344-012-0685-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10344-012-0685-4

Keywords

  • Alces alces
  • Climate change
  • Deer
  • Ehrlichiosis
  • Wildlife disease