Skip to main content

Applications and techniques for non-invasive faecal genetics research in felid conservation

Abstract

Non-invasive genetic techniques utilising DNA extracted from faeces hold great promise for felid conservation research. These methods can be used to establish species distributions, model habitat requirements, analyse diet, estimate abundance and population density, and form the basis for population, landscape and conservation genetic analyses. Due to the elusive nature of most felid species, non-invasive genetic methods have the potential to provide valuable data that cannot be obtained with traditional observational or capture techniques. Thus, these methods are particularly valuable for research and conservation of endangered felid species. Here, we review recent studies that use non-invasive faecal genetic techniques to survey or study wild felids; provide an overview of field, laboratory and analysis techniques; and offer suggestions on how future non-invasive genetic studies can be expanded or improved to more effectively support conservation.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Adams JR, Lucash C, Schutte L, Waits LP (2007) Locating hybrid individuals in the red wolf (Canis rufus) experimental population area using a spatially targeted sampling strategy and faecal DNA genotyping. Mol Ecol 16(9):1823–1834. doi:10.1111/j.1365-294X.2007.03270.x

    PubMed  Article  Google Scholar 

  2. Anwar MB, Jackson R, Nadeem MS, Janecka JE, Hussain S, Beg MA, Muhammad G, Qayyum M (2011) Food habits of the snow leopard Panthera uncia (Schreber, 1775) in Baltistan, Northern Pakistan. Eur J Wildl Res 57(5):1077–1083. doi:10.1007/s10344-011-0521-2

    Article  Google Scholar 

  3. Balme GA, Hunter LTB, Slotow R (2009) Evaluating methods for counting cryptic carnivores. J Wildl Manag 73(3):433–441. doi:10.2193/2007-368

    Article  Google Scholar 

  4. Bellemain E, Swenson JE, Tallmon O, Brunberg S, Taberlet P (2005) Estimating population size of elusive animals with DNA from hunter-collected feces: four methods for brown bears. Conserv Biol 19(1):150–161. doi:10.1111/j.1523-1739.2005.00549.x

    Article  Google Scholar 

  5. Bhagavatula J, Singh L (2006) Genotyping faecal samples of Bengal tiger Panthera tigris tigris for population estimation: a pilot study. BMC Genet 7:48. doi:10.1186/1471-2156-7-48

    PubMed  Article  CAS  Google Scholar 

  6. Bonin A, Bellemain E, Bronken Eidesen P, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetics studies. Mol Ecol 13(11):3261–3273. doi:10.1111/j.1365-294X.2004.02346.x

    PubMed  CAS  Article  Google Scholar 

  7. Borchers DL, Efford MG (2008) Spatially explicit maximum likelihood methods for capture–recapture studies. Biometrics 64(2):377–385. doi:10.1111/j.1541-0420.2007.00927.x

    PubMed  CAS  Article  Google Scholar 

  8. Borthakur U, Barman RD, Das C, Basumatary A, Talukdar A, Ahmed MF, Talukdar BK, Bharali R (2011) Noninvasive genetic monitoring of tiger (Panthera tigris tigris) population of Orang National Park in the Brahmaputra floodplain, Assam, India. Eur J Wildl Res 57(3):603–613. doi:10.1007/s10344-010-0471-0

    Article  Google Scholar 

  9. Boulanger J, McLellan BN, Woods JG, Proctor MF, Strobeck C (2004) Sampling design and bias in DNA-based capture–mark–recapture population and density estimates of grizzly bears. J Wildl Manag 68(3):457–469. doi:10.2193/0022-541x(2004)068[0457:sdabid]2.0.co;2

    Article  Google Scholar 

  10. Bradley RD, Baker RJ (2001) A test of the genetic species concept: cytochrome-b sequences and mammals. J Mammal 82(4):960–973. doi:10.1644/1545-1542(2001)082<0960:atotgs>2.0.co;2

    Article  Google Scholar 

  11. Broquet T, Petit E (2004) Quantifying genotyping errors in noninvasive population genetics. Mol Ecol 13(11):3601–3608. doi:10.1111/j.1365-294X.2004.02352.x

    PubMed  CAS  Article  Google Scholar 

  12. Broquet T, Menard N, Petit E (2007) Noninvasive population genetics: a review of sample source, diet, fragment length and microsatellite motif effects on amplification success and genotyping error rates. Conserv Genet 8(1):249–260. doi:10.1007/s10592-006-9146-5

    Article  Google Scholar 

  13. Burnham KP, Overton WS (1979) Robust estimation of population-size when capture probabilities vary among animals. Ecology 60(5):927–936. doi:10.2307/1936861

    Article  Google Scholar 

  14. Busby GBJ, Gottelli D, Wacher T, Marker L, Belbachir F, De Smet K, Belbachir-Bazi A, Fellous A, Belghoul M, Durant SM (2009) Genetic analysis of scat reveals leopard Panthera pardus and cheetah Acinonyx jubatus in southern Algeria. Oryx 43(03):412. doi:10.1017/s0030605309001197

    Article  Google Scholar 

  15. Chao A (1988) Estimating animal abundance with capture frequency data. J Wildl Manag 52(2):295–300. doi:10.2307/3801237

    Article  Google Scholar 

  16. Chaves PB, Graeff VG, Lion MB, Oliveira LR, Eizirik E (2012) DNA barcoding meets molecular scatology: short mtDNA sequences for standardized species assignment of carnivore noninvasive samples. Mol Ecol Resour 12(1):18–35. doi:10.1111/j.1755-0998.2011.03056.x

    PubMed  CAS  Article  Google Scholar 

  17. Cossios D, Angers B (2006) Identification of andean felid feces using PCR-RFLP. Mastozool Neotrop 13(2):239–244

    Google Scholar 

  18. Cossios ED, Madrid A, Condori JL, Fajardo U (2007) Update on the distribution of the Andean cat Oreailurus jacobita and the pampas cat Lynchailurus colocolo in Peru. Endanger Species Res 3:313–320. doi:10.3354/esr00059

    Article  Google Scholar 

  19. Dalen L, Gotherstrom A, Angerbjorn A (2004) Identifying species from pieces of faeces. Conserv Genet 5(1):109–111. doi:10.1023/b:coge.0000014060.54070.45

    Article  Google Scholar 

  20. Davis BW, Raudsepp T, Wilkerson AJP, Agarwala R, Schaffer AA, Houck M, Chowdhary BP, Murphy WJ (2009) A high-resolution cat radiation hybrid and integrated FISH mapping resource for phylogenomic studies across Felidae. Genomics 93(4):299–304. doi:10.1016/j.ygeno.2008.09.010

    PubMed  CAS  Article  Google Scholar 

  21. Davison A, Birks JDS, Brookes RC, Braithwaite TC, Messenger JE (2002) On the origin of faeces: morphological versus molecular methods for surveying rare carnivores from their scats. J Zool 257:141–143. doi:10.1017/s0952836902000730

    Article  Google Scholar 

  22. Dillon A, Kelly MJ (2008) Ocelot home range, overlap and density: comparing radio telemetry with camera trapping. J Zool 275(4):391–398. doi:10.1111/j.1469-7998.2008.00452.x

    Article  Google Scholar 

  23. Ebert C, Knauer F, Storch I, Hohmann U (2010) Individual heterogeneity as a pitfall in population estimates based on non-invasive genetic sampling: a review and recommendations. Wildl Biol 16(3):225–240. doi:10.2981/09-108

    Article  Google Scholar 

  24. Eggert LS, Eggert JA, Woodruff DS (2003) Estimating population sizes for elusive animals: the forest elephants of Kakum National Park, Ghana. Mol Ecol 12(6):1389–1402. doi:10.1046/j.1365-294X.2003.01822.x

    PubMed  CAS  Article  Google Scholar 

  25. Ernest HB, Penedo MCT, May BP, Syvanen M, Boyce WM (2000) Molecular tracking of mountain lions in the Yosemite Valley region in California: genetic analysis using microsatellites and faecal DNA. Mol Ecol 9(4):433–441. doi:10.1046/j.1365-294x.2000.00890.x

    PubMed  CAS  Article  Google Scholar 

  26. Ernest HB, Boyce WM, Bleich VC, May B, Stiver SJ, Torres SG (2003) Genetic structure of mountain lion (Puma concolor) populations in California. Conserv Genet 4(3):353–366. doi:10.1023/a:1024069014911

    CAS  Article  Google Scholar 

  27. Estes JA, Terborgh J, Brashares JS, Power ME, Berger J, Bond WJ, Carpenter SR, Essington TE, Holt RD, Jackson JBC, Marquis RJ, Oksanen L, Oksanen T, Paine RT, Pikitch EK, Ripple WJ, Sandin SA, Scheffer M, Schoener TW, Shurin JB, Sinclair ARE, Soule ME, Virtanen R, Wardle DA (2011) Trophic downgrading of planet Earth. Science 333(6040):301–306. doi:10.1126/science.1205106

    PubMed  CAS  Article  Google Scholar 

  28. Farrell LE, Romant J, Sunquist ME (2000) Dietary separation of sympatric carnivores identified by molecular analysis of scats. Mol Ecol 9(10):1583–1590. doi:10.1046/j.1365-294x.2000.01037.x

    PubMed  CAS  Article  Google Scholar 

  29. Fernandez N, Delibes M, Palomares F (2006) Landscape evaluation in conservation: molecular sampling and habitat modeling for the Iberian lynx. Ecol Appl 16(3):1037–1049. doi:10.1890/1051-0761(2006)016[1037:leicms]2.0.co;2

    PubMed  Article  Google Scholar 

  30. Foran DR, Crooks KR, Minta SC (1997) Species identification from scat: an unambiguous genetic method. Wildl Soc Bull 25(4):835–839

    Google Scholar 

  31. Foster RJ, Harmsen BJ, Valdes B, Pomilla C, Doncaster CP (2010) Food habits of sympatric jaguars and pumas across a gradient of human disturbance. J Zool 280(3):309–318. doi:10.1111/j.1469-7998.2009.00663.x

    Article  Google Scholar 

  32. Frankham R, Ralls K (1998) Conservation biology—inbreeding leads to extinction. Nature 392(6675):441–442. doi:10.1038/33022

    CAS  Article  Google Scholar 

  33. Frantz AC, Pope LC, Carpenter PJ, Roper TJ, Wilson GJ, Delahay RJ, Burke T (2003) Reliable microsatellite genotyping of the Eurasian badger (Meles meles) using faecal DNA. Mol Ecol 12(6):1649–1661. doi:10.1046/j.1365-294X.2003.01848.x

    PubMed  CAS  Article  Google Scholar 

  34. Goodrich JM, Miquelle DG, Smirnov EN, Kerley LL, Quigley HB, Hornocker MG (2010) Spatial structure of Amur (Siberian) tigers (Panthera tigris altaica) on Sikhote-Alin Biosphere Zapovednik, Russia. J Mammal 91(3):737–748. doi:10.1644/09-mamm-a-293.1

    Article  Google Scholar 

  35. Gottelli D, Wang JL, Bashir S, Durant SM (2007) Genetic analysis reveals promiscuity among female cheetahs. Proc R Soc B Biol Sci 274(1621):1993–2001. doi:10.1098/rspb.2007.0502

    Article  Google Scholar 

  36. Greenwood JJD (1996) Basic techniques. Ecological census techniques: a handbook. Cambridge University Press, Cambridge

    Google Scholar 

  37. Guo DC, Milewicz DM (2003) Methodology for using a universal primer to label amplified DNA segments for molecular analysis. Biotechnol Lett 25(24):2079–2083. doi:10.1023/B:BILE.0000007075.24434.5e

    PubMed  CAS  Article  Google Scholar 

  38. Haag T, Santos AS, De Angelo C, Srbek-Araujo AC, Sana DA, Morato RG, Salzano FM, Eizirik E (2009) Development and testing of an optimized method for DNA-based identification of jaguar (Panthera onca) and puma (Puma concolor) faecal samples for use in ecological and genetic studies. Genetica 136(3):505–512. doi:10.1007/s10709-008-9347-6

    PubMed  CAS  Article  Google Scholar 

  39. Haag T, Santos AS, Sana DA, Morato RG, Cullen L Jr, Crawshaw PG Jr, De Angelo C, Di Bitetti MS, Salzano FM, Eizirik E (2010) The effect of habitat fragmentation on the genetic structure of a top predator: loss of diversity and high differentiation among remnant populations of Atlantic Forest jaguars (Panthera onca). Mol Ecol 19(22):4906–4921. doi:10.1111/j.1365-294X.2010.04856.x

    PubMed  CAS  Article  Google Scholar 

  40. Hebert L, Darden SK, Pedersen BV, Dabelsteen T (2011) Increased DNA amplification success of non-invasive genetic samples by successful removal of inhibitors from faecal samples collected in the field. Conserv Genet Resour 3(1):41–43. doi:10.1007/s12686-010-9280-8

    Article  Google Scholar 

  41. Hoss M, Kohn M, Paabo S, Knauer F, Schroder W (1992) Excrement analysis by PCR. Nature 359(6392):199–199. doi:10.1038/359199a0

    PubMed  CAS  Article  Google Scholar 

  42. Hussain S (2000) Protecting the snow leopard and enhancing farmers' livelihoods: a pilot insurance scheme in Baltistan. Mt Res Dev 20(3):226–231. doi:10.1659/0276-4741(2000)020[0226:ptslae]2.0.co;2

    Article  Google Scholar 

  43. Hussain S (2003) The status of the snow leopard in Pakistan and its conflict with local farmers. Oryx 37(1):26–33. doi:10.1017/s0030605303000085

    Article  Google Scholar 

  44. Inskip C, Zimmermann A (2009) Review human–felid conflict: a review of patterns and priorities worldwide. Oryx 43(1):18–34. doi:10.1017/s003060530899030x

    Article  Google Scholar 

  45. Janečka JE, Blankenship TL, Hirth DH, Tewes ME, Kilpatrick CW, Grassman LI (2006) Kinship and social structure of bobcats (Lynx rufus) inferred from microsatellite and radio-telemetry data. J Zool 269(4):494–501. doi:10.1111/j.1469-7998.2006.00099.x

    Article  Google Scholar 

  46. Janečka JE, Blankenship TL, Hirth DH, William Kilpatrick C, Tewes ME, Grassman LI (2007a) Evidence for male-biased dispersal in bobcats Lynx rufus using relatedness analysis. Wild Biol 13(1):38–47. doi:10.2981/0909-6396(2007)13[38:efmdib]2.0.co;2

    Article  Google Scholar 

  47. Janečka JE, Tewes ME, Laack LL, Grassman LI, Haines AM, Honeycutt RL (2007b) Small effective population sizes of two remnant ocelot populations (Leopardus pardalis albescens) in the United States. Conserv Genet 9(4):869–878. doi:10.1007/s10592-007-9412-1

    Article  CAS  Google Scholar 

  48. Janečka JE, Jackson R, Yuquang Z, Diqiang L, Munkhtsog B, Buckley-Beason V, Murphy WJ (2008) Population monitoring of snow leopards using noninvasive collection of scat samples: a pilot study. Anim Conserv 11(5):401–411. doi:10.1111/j.1469-1795.2008.00195.x

    Article  Google Scholar 

  49. Janečka J, Munkhtsog B, Jackson R, Naranbaatar G, Mallon D, Murphy W (2011a) Comparison of noninvasive genetic and camera-trapping techniques for surveying snow leopards. J Mammal 92(4):771–783. doi:10.1644/10-MAMM-A-036.1

    Article  Google Scholar 

  50. Janečka JE, Tewes ME, Laack LL, Caso A, Grassman LI Jr, Haines AM, Shindle DB, Davis BW, Murphy WJ, Honeycutt RL (2011b) Reduced genetic diversity and isolation of remnant ocelot populations occupying a severely fragmented landscape in southern Texas. Anim Conserv. doi:10.1111/j.1469-1795.2011.00475.x

  51. Karanth KU, Nichols JD (1998) Estimation of tiger densities in India using photographic captures and recaptures. Ecology 79(8):2852–2862. doi:10.1890/0012-9658(1998)079[2852:eotdii]2.0.co;2

    Article  Google Scholar 

  52. Karmacharya DB, Thapa K, Shrestha R, Dhakal M, Janečka JE (2011) Noninvasive genetic population survey of snow leopards (Panthera uncia) in Kangchenjunga Conservation Area, Shey Phoksundo National Park and surrounding buffer zones of Nepal. BMC Research Notes 4(516):1–8. doi:10.1186/1756-0500-4-516

  53. Kelly MJ, Betsch J, Wultsch C, Mesa B, Mills LS (2012) Noninvasive sampling for carnivores. In: Biotani L, Powell RA (eds) Carnivore ecology and conservation: a hand-book of techniques. Oxford University Press, Oxford, p 47–67

  54. Kery M, Gardner B, Stoeckle T, Weber D, Royle JA (2011) Use of spatial capture–recapture modeling and DNA data to estimate densities of elusive animals. Conserv Biol 25(2):356–364. doi:10.1111/j.1523-1739.2010.01616.x

    PubMed  Google Scholar 

  55. Knapp SM, Craig BA, Waits LP (2009) Incorporating genotyping error into non-invasive DNA-based mark–recapture population estimates. J Wildl Manag 73(4):598–604. doi:10.2193/2007-156

    Article  Google Scholar 

  56. Kohn MH, Wayne RK (1997) Facts from feces revisited. Trends Ecol Evol 12(6):223–227. doi:10.1016/s0169-5347(97)01050-1

    PubMed  CAS  Article  Google Scholar 

  57. Kohn MH, York EC, Kamradt DA, Haugt G, Sauvajot RM, Wayne RK (1999) Estimating population size by genotyping faeces. Proc R Soc Lond Ser B Biol Sci 266(1420):657–663

    CAS  Article  Google Scholar 

  58. Kurose N, Masuda R, Tatara M (2005) Fecal DNA analysis for identifying species and sex of sympatric carnivores: a noninvasive method for conservation on the Tsushima islands, Japan. J Hered 96(6):688–697. doi:10.1093/jhered/esi124

    PubMed  CAS  Article  Google Scholar 

  59. Leberg PL, Carloss MR, Dugas LJ, Pilgrim KL, Mills LS, Green MC, Scognamillo D (2004) Recent record of a cougar (Puma concolor) in Louisiana, with notes on diet, based on analysis of fecal materials. Southeast Nat 3(4):653–658. doi:10.1656/1528-7092(2004)003[0653:rroacp]2.0.co;2

    Article  Google Scholar 

  60. Lovari S, Boesi R, Minder I, Mucci N, Randi E, Dematteis A, Ale SB (2009) Restoring a keystone predator may endanger a prey species in a human-altered ecosystem: the return of the snow leopard to Sagarmatha National Park. Anim Conserv 12(6):559–570

    Article  Google Scholar 

  61. Lukacs PM (2009) Closed population capture–recapture models. In: Cooch E, White G (eds) Program MARK: a gentle introduction. p 14.1–14.38. http://www.phidot.org/software/mark/. Accessed 22 June 2012

  62. Lukacs PM, Burnham KP (2005a) Estimating population size from DNA-based closed capture–recapture data incorporating genotyping error. J Wildl Manag 69(1):396–403. doi:10.2193/0022-541x(2005)069<0396:epsfdc>2.0.co;2

    Article  Google Scholar 

  63. Lukacs PM, Burnham KP (2005b) Review of capture–recapture methods applicable to noninvasive genetic sampling. Mol Ecol 14(13):3909–3919. doi:10.1111/j.1365-294X.2005.02717.x

    PubMed  Article  Google Scholar 

  64. Macdonald DW (1980) Patterns of scent marking with urine and faeces amongst carnivore communities. In: Stoddart DM (ed) Olfaction in mammals. Academic Press, London, p 107–135

  65. Macdonald D, Loveridge A (2010) The biology and conservation of wild felids. Oxford Press, UK

  66. MacKenzie DI, Nichols JD, Lachman GB, Droege S, Royle JA, Langtimm CA (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83(8):2248–2255. doi:10.2307/3072056

    Article  Google Scholar 

  67. Maffei L, Noss AJ (2008) How small is too small? Camera trap survey areas and density estimates for ocelots in the Bolivian chaco. Biotropica 40(1):71–75. doi:10.1111/j.1744-7429.2007.00341.x

    Google Scholar 

  68. Marino J, Bennett M, Cossios D, Iriarte A, Lucherini M, Pliscoff P, Sillero-Zubiri C, Villalba L, Walker S (2011) Bioclimatic constraints to Andean cat distribution: a modelling application for rare species. Divers Distrib 17(2):311–322. doi:10.1111/j.1472-4642.2011.00744.x

    Article  Google Scholar 

  69. Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7(5):639–655. doi:10.1046/j.1365-294x.1998.00374.x

    PubMed  CAS  Article  Google Scholar 

  70. Marucco F, Boitani L, Pletscher DH, Schwartz MK (2011) Bridging the gaps between non-invasive genetic sampling and population parameter estimation. Eur J Wildl Res 57(1):1–13. doi:10.1007/s10344-010-0477-7

    Article  Google Scholar 

  71. McKelvey KS, Schwartz MK (2004) Genetic errors associated with population estimation using non-invasive molecular tagging: problems and new solutions. J Wildl Manag 68(3):439–448. doi:10.2193/0022-541x(2004)068[0439:geawpe]2.0.co;2

    Article  Google Scholar 

  72. McKelvey KS, Schwartz MK (2005) DROPOUT: a program to identify problem loci and samples for noninvasive genetic samples in a capture-mark-recapture framework. Mol Ecol Notes 5(3):716–718. doi:10.1111/j.1471-8286.2005.01038.x

    CAS  Article  Google Scholar 

  73. McKelvey KS, Von Kienast J, Aubry KB, Koehler GM, Maletzke BT, Squires JR, Lindquist EL, Loch S, Schwartz MK (2006) DNA analysis of hair and scat collected along snow tracks to document the presence of Canada lynx. Wildl Soc Bull 34(2):451–455. doi:10.2193/0091-7648(2006)34[451:daohas]2.0.co;2

    Article  Google Scholar 

  74. Menotti-Raymond M, David VA, Lyons LA, Schaffer AA, Tomlin JF, Hutton MK, O'Brien SJ (1999) A genetic linkage map of microsatellites in the domestic cat (Felis catus). Genomics 57(1):9–23. doi:10.1006/geno.1999.5743

    PubMed  CAS  Article  Google Scholar 

  75. Menotti-Raymond M, David VA, Agarwala R, Schaffer AA, Stephens R, O'Brien SJ, Murphy WJ (2003a) Radiation hybrid mapping of 304 novel microsatellites in the domestic cat genome. Cytogenet Genome Res 102(1–4):272–276. doi:10.1159/000075762

    PubMed  CAS  Article  Google Scholar 

  76. Menotti-Raymond M, David VA, Chen ZQ, Menotti KA, Sun S, Schaffer AA, Agarwala R, Tomlin JF, O'Brien SJ, Murphy WJ (2003b) Second-generation integrated genetic linkage/radiation hybrid maps of the domestic cat (Felis catus). J Hered 94(1):95–106. doi:10.1093/jhered/esg008

    PubMed  CAS  Article  Google Scholar 

  77. Menotti-Raymond M, David VA, Schaffer AA, Tomlin JF, Eizirik E, Phillip C, Wells D, Pontius JU, Hannah SS, O'Brien SJ (2009) An autosomal genetic linkage map of the domestic cat, Felis silvestris catus. Genomics 93(4):305–313. doi:10.1016/j.ygeno.2008.11.004

    PubMed  CAS  Article  Google Scholar 

  78. Michalski F, Valdez FP, Norris D, Zieminski C, Kashivakura CK, Trinca CS, Smith HB, Vynne C, Wasser SK, Metzger JP, Eizirik E (2011) Successful carnivore identification with faecal DNA across a fragmented Amazonian landscape. Mol Ecol Resour 11(5):862–871. doi:10.1111/j.1755-0998.2011.03031.x

    PubMed  Article  Google Scholar 

  79. Miller CR, Joyce P, Waits LP (2002) Assessing allelic dropout and genotype reliability using maximum likelihood. Genetics 160(1):357–366

    PubMed  Google Scholar 

  80. Miller CR, Joyce P, Waits LP (2005) A new method for estimating the size of small populations from genetic mark–recapture data. Mol Ecol 14(7):1991–2005. doi:10.1111/j.1365-294X.2005.02577.x

    PubMed  CAS  Article  Google Scholar 

  81. Mills LS, Citta JJ, Lair KP, Schwartz MK, Tallmon DA (2000a) Estimating animal abundance using noninvasive DNA sampling: promise and pitfalls. Ecol Appl 10(1):283–294. doi:10.2307/2641002

    Article  Google Scholar 

  82. Mills LS, Pilgrim KL, Schwartz MK, McKelvey K (2000b) Identifying lynx and other North American felids based on mtDNA analysis. Conserv Genet 1(3):285–288. doi:10.1023/a:1011574209558

    CAS  Article  Google Scholar 

  83. Miotto RA, Rodrigues FP, Ciocheti G, Galetti PM (2007) Determination of the minimum population size of pumas (Puma concolor) through fecal DNA analysis in two protected cerrado areas in the Brazilian Southeast. Biotropica 39(5):647–654. doi:10.1111/j.1744-7429.2007.00315.x

    Article  Google Scholar 

  84. Mondol S, Navya R, Athreya V, Sunagar K, Selvaraj VM, Ramakrishnan U (2009a) A panel of microsatellites to individually identify leopards and its application to leopard monitoring in human dominated landscapes. BMC Genet 10:79. doi:10.1186/1471-2156-10-79

    PubMed  Article  CAS  Google Scholar 

  85. Mondol S, Ullas Karanth K, Samba Kumar N, Gopalaswamy AM, Andheria A, Ramakrishnan U (2009b) Evaluation of non-invasive genetic sampling methods for estimating tiger population size. Biol Conserv 142(10):2350–2360. doi:10.1016/j.biocon.2009.05.014

    Article  Google Scholar 

  86. Mukherjee S, Krishnan A, Tamma K, Home C, Navya R, Joseph S, Das A, Ramakrishnan U (2010) Ecology driving genetic variation: a comparative phylogeography of jungle cat (Felis chaus) and leopard cat (Prionailurus bengalensis) in India. PLoS One 5(10):e13724. doi:10.1371/journal.pone.0013724

    PubMed  Article  CAS  Google Scholar 

  87. Nagata J, Aramilev VV, Belozor A, Sugimoto T, McCullough DR (2005) Fecal genetic analysis using PCR-RFLP of cytochrome b to identify sympatric carnivores, the tiger Panthera tigris and the leopard Panthera pardus, in far eastern Russia. Conserv Genet 6(5):863–866. doi:10.1007/s10592-005-9038-0

    Article  Google Scholar 

  88. Napolitano C, Bennett M, Johnson WE, O'Brien SJ, Marquet PA, Barria I, Poulin E, Iriarte A (2008) Ecological and biogeographical inferences on two sympatric and enigmatic Andean cat species using genetic identification of faecal samples. Mol Ecol 17(2):678–690. doi:10.1111/j.1365-294X.2007.03606.x

    PubMed  CAS  Article  Google Scholar 

  89. Novack AJ, Main MB, Sunquist ME, Labisky RF (2005) Foraging ecology of jaguar (Panthera onca) and puma (Puma concolor) in hunted and non-hunted sites within the Maya Biosphere Reserve, Guatemala. J Zool 267:167–178. doi:10.1017/s0952836905007338

    Article  Google Scholar 

  90. Nowell K, Jackson P (1996) Wild cats: status survey and action plan. International Union for Conservation of Nature and Natural Resources, Gland, Switzerland

  91. Nunez-Perez R (2011) Estimating jaguar population density using camera-traps: a comparison with radio-telemetry estimates. J Zool 285(1):39–45. doi:10.1111/j.1469-7998.2011.00812.x

    Google Scholar 

  92. Obbard ME, Howe EJ, Kyle CJ (2010) Empirical comparison of density estimators for large carnivores. J Appl Ecol 47(1):76–84. doi:10.1111/j.1365-2664.2009.01758.x

    Article  Google Scholar 

  93. Oliveira R, Castro D, Godinho R, Luikart G, Alves PC (2010) Species identification using a small nuclear gene fragment: application to sympatric wild carnivores from South-western Europe. Conserv Genet 11(3):1023–1032. doi:10.1007/s10592-009-9947-4

    Article  Google Scholar 

  94. Onorato D, White C, Zager P, Waits LP (2006) Detection of predator presence at elk mortality sites using mtDNA analysis of hair and scat samples. Wildl Soc Bull 34(3):815–820. doi:10.2193/0091-7648(2006)34[815:doppae]2.0.co;2

    Article  Google Scholar 

  95. Onorato D, Desimone R, White C, Waits LP (2011) Genetic assessment of paternity and relatedness in a managed population of cougars. J Wildl Manag 75(2):378–384. doi:10.1002/jwmg.43

    Article  Google Scholar 

  96. Otis DL, Burnham KP, White GC, Anderson DR (1978) Statistical inference from capture data on closed animal populations. Wildl Monogr (62):1–135

  97. Paetkau D (2003) An empirical exploration of data quality in DNA-based population inventories. Mol Ecol 12(6):1375–1387. doi:10.1046/j.1365-294X.2003.01820.x

    PubMed  CAS  Article  Google Scholar 

  98. Palomares F, Godoy JA, Piriz A, O'Brien SJ, Johnson WE (2002) Faecal genetic analysis to determine the presence and distribution of elusive carnivores: design and feasibility for the Iberian lynx. Mol Ecol 11(10):2171–2182. doi:10.1046/j.1365-294X.2002.01608.x

    PubMed  CAS  Article  Google Scholar 

  99. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6(1):288–295. doi:10.1111/j.1471-8286.2005.01155.x

    Article  Google Scholar 

  100. Perez I, Geffen E, Mokady O (2006) Critically endangered Arabian leopards Panthera pardus nimr in Israel: estimating population parameters using molecular scatology. Oryx 40(03):295. doi:10.1017/s0030605306000846

    Article  Google Scholar 

  101. Perovic P, Walker S, Novaro A (2003) New records of the endangered Andean mountain cat in northern Argentina. Oryx 37(3):374–377. doi:10.1017/s0030605303000644

    Article  Google Scholar 

  102. Petit E, Valiere N (2006) Estimating population size with noninvasive capture–mark–recapture data. Conserv Biol 20(4):1062–1073. doi:10.1111/j.1523-1739.2006.00417.x

    PubMed  Article  Google Scholar 

  103. Phillips SJ, Dudik M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31(2):161–175. doi:10.1111/j.0906-7590.2008.5203.x

    Article  Google Scholar 

  104. Phillips S, Anderson R, Schapire R (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190(3–4):231–259. doi:10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  105. Piggott MP, Taylor AC (2003) Remote collection of animal DNA and its applications in conservation management and understanding the population biology of rare and cryptic species. Wildl Res 30(1):1–13. doi:10.1071/wr02077

    Article  Google Scholar 

  106. Pilgrim KL, McKelvey KS, Riddle AE, Schwartz MK (2005) Felid sex identification based on noninvasive genetic samples. Mol Ecol Notes 5(1):60–61. doi:10.1111/j.1471-8286.2004.00831.x

    CAS  Article  Google Scholar 

  107. Pires AE, Fernandes ML (2003) Last lynxes in Portugal? Molecular approaches in a pre-extinction scenario. Conserv Genet 4(4):525–532. doi:10.1023/a:1024762013876

    CAS  Article  Google Scholar 

  108. Polisar J, Maxit I, Scognamillo D, Farrell L, Sunquist ME, Eisenberg JF (2003) Jaguars, pumas, their prey base, and cattle ranching: ecological interpretations of a management problem. Biol Conserv 109(2):297–310. doi:10.1016/s0006-3207(02)00157-x

    Article  Google Scholar 

  109. Reddy PA, Kumaraguru A, Yadav PR, Ramyashree A, Bhagavatula J, Shivaji S (2010) Studies to determine presence or absence of the Indian tiger (Panthera tigris tigris) in Kawal Wildlife Sanctuary, India. Eur J Wildl Res 57(3):517–522. doi:10.1007/s10344-010-0460-3

    Article  Google Scholar 

  110. Reed DH, Nicholas AC, Stratton GE (2007) Genetic quality of individuals impacts population dynamics. Anim Conserv 10(3):275–283. doi:10.1111/j.1469-1795.2007.00120.x

    Article  Google Scholar 

  111. Roques S, Adrados B, Chavez C, Keller C, Magnusson WE, Palomares F, Godoy JA (2011) Identification of neotropical felid faeces using RCP–PCR. Mol Ecol Resour 11(1):171–175. doi:10.1111/j.1755-0998.2010.02878.x

    PubMed  CAS  Article  Google Scholar 

  112. Royle JA, Young KV (2008) A hierarchical model for spatial capture–recapture data. Ecology 89(8):2281–2289. doi:10.1890/07-0601.1

    PubMed  Article  Google Scholar 

  113. Royle JA, Nichols JD, Karanth KU, Gopalaswamy AM (2009) A hierarchical model for estimating density in camera-trap studies. J Appl Ecol 46(1):118–127. doi:10.1111/j.1365-2664.2008.01578.x

    Article  Google Scholar 

  114. Ruell EW, Crooks KR (2007) Evaluation of noninvasive genetic sampling methods for felid and canid populations. J Wildl Manag 71(5):1690–1694. doi:10.2193/2006-061

    Article  Google Scholar 

  115. Ruell EW, Riley SPD, Douglas MR, Pollinger JP, Crooks KR (2009) Estimating bobcat population sizes and densities in a fragmented urban landscape using noninvasive capture–recapture sampling. J Mammal 90(1):129–135. doi:10.1644/07-mamm-a-249.1

    Article  Google Scholar 

  116. Russello MA, Gladyshev E, Miquelle D, Caccone A (2004) Potential genetic consequences of a recent bottleneck in the Amur tiger of the Russian far east. Conserv Genet 5(5):707–713. doi:10.1007/s10592-004-1860-2

    CAS  Article  Google Scholar 

  117. Schwartz MK, Mills LS, McKelvey KS, Ruggiero LF, Allendorf FW (2002) DNA reveals high dispersal synchronizing the population dynamics of Canada lynx. Nature 415(6871):520–522. doi:10.1038/415520a

    PubMed  CAS  Article  Google Scholar 

  118. Schwartz MK, Luikart G, Waples RS (2007) Genetic monitoring as a promising tool for conservation and management. Trends Ecol Evol 22(1):25–33. doi:10.1016/j.tree.2006.08.009

    PubMed  Article  Google Scholar 

  119. Sharma R, Stuckas H, Bhaskar R, Rajput S, Khan I, Goyal SP, Tiedemann R (2008) mtDNA indicates profound population structure in Indian tiger (Panthera tigris tigris). Conserv Genet 10(4):909–914. doi:10.1007/s10592-008-9568-3

    Article  CAS  Google Scholar 

  120. Sharma R, Stuckas H, Bhaskar R, Khan I, Goyal SP, Tiedemann R (2011) Genetically distinct population of Bengal tiger (Panthera tigris tigris) in Terai Arc Landscape (TAL) of India. Mamm Biol 76(4):484–490. doi:10.1016/j.mambio.2010.10.005

    Google Scholar 

  121. Shehzad W, McCarthy TM, Pompanon F, Purevjav L, Coissac E, Riaz T, Taberlet P (2012a) Prey preference of snow leopard (Panthera uncia) in South Gobi, Mongolia. PLoS One 7(2). doi:10.1371/journal.pone.0032104

  122. Shehzad W, Riaz T, Nawaz MA, Miquel C, Poillot C, Shah SA, Pompanon F, Coissac E, Taberlet P (2012b) Carnivore diet analysis based on next-generation sequencing: application to the leopard cat (Prionailurus bengalensis) in Pakistan. Mol Ecol 21(8):1951–1965. doi:10.1111/j.1365-294X.2011.05424.x

    PubMed  CAS  Article  Google Scholar 

  123. Smith DA, Ralls K, Hurt A, Adams B, Parker M, Davenport B, Smith MC, Maldonado JE (2003) Detection and accuracy rates of dogs trained to find scats of San Joaquin kit foxes (Vulpes macrotis mutica). Anim Conserv 6:339–346. doi:10.1017/s136794300300341x

    Article  Google Scholar 

  124. Soisalo MK, Cavalcanti SMC (2006) Estimating the density of a jaguar population in the Brazilian Pantanal using camera-traps and capture–recapture sampling in combination with GPS radio-telemetry. Biol Conserv 129(4):487–496. doi:10.1016/j.biocon.2005.11.023

    Article  Google Scholar 

  125. Sollmann R, Furtado MM, Gardner B, Hofer H, Jacomo ATA, Torres NM, Silveira L (2011) Improving density estimates for elusive carnivores: accounting for sex-specific detection and movements using spatial capture–recapture models for jaguars in central Brazil. Biol Conserv 144(3):1017–1024. doi:10.1016/j.biocon.2010.12.011

    Article  Google Scholar 

  126. Spong G, Johansson M, Bjorklund M (2000) High genetic variation in leopards indicates large and long-term stable effective population size. Mol Ecol 9(11):1773–1782. doi:10.1046/j.1365-294x.2000.01067.x

    PubMed  CAS  Article  Google Scholar 

  127. Sugimoto T, Nagata J, Aramilev VV, McCullough DR (2012) Population size estimation of Amur tigers in Russian Far East using noninvasive genetic samples. J Mammal 93(1):93–101. doi:10.1644/10-mamm-a-368.1

    Article  Google Scholar 

  128. Sunquist ME, Sunquist F (2002) Wild cats of the world. University of Chicago Press, Chicago

    Google Scholar 

  129. Taberlet P, Fumagalli L (1996) Owl pellets as a source of DNA for genetic studies of small mammals. Mol Ecol 5(2):301–305. doi:10.1111/j.1365-294X.1996.tb00318.x

    PubMed  CAS  Google Scholar 

  130. Taberlet P, Waits LP, Luikart G (1999) Noninvasive genetic sampling: look before you leap. Trends Ecol Evol 14(8):323–327

    PubMed  Article  Google Scholar 

  131. Tende T, Ottosson U, Hansson B, Akesson M, Bensch S (2010) Population size of lions in Yankari Game Reserve as revealed by faecal DNA sampling. Afr J Ecol 48(4):949–952. doi:10.1111/j.1365-2028.2009.01196.x

    Article  Google Scholar 

  132. Terborgh J, Estes JA, Paquet P, Ralls K, Boyd-Heger D, Miller BJ, Noss RF (1999) The role of top carnivores in regulating terrestrial ecosystems. In: Soulé, ME, Terborgh, J (eds.) Continental conservation: Scientific foundation of regional reserve networks. Island Press, Washington DC, USA, p 65–98

  133. Thompson CM, Royle JA, Garner JD (2012) A framework for inference about carnivore density from unstructured spatial sampling of scat using detector dogs. J Wildl Manag 76(4):863–871. doi:10.1002/jwmg.317

    Article  Google Scholar 

  134. Valiere N (2002) GIMLET: a computer program for analysing genetic individual identification data. Mol Ecol Notes 2(3):377–379. doi:10.1046/j.1471-8286.2002.00228.x

    CAS  Article  Google Scholar 

  135. Valiere N, Bonenfant C, Toigo C, Luikart G, Gaillard J-M, Klein F (2007) Importance of a pilot study for non-invasive genetic sampling: genotyping errors and population size estimation in red deer. Conserv Genet 8(1):69–78. doi:10.1007/s10592-006-9149-2

    Article  Google Scholar 

  136. Waits JL, Leberg PL (2000) Biases associated with population estimation using molecular tagging. Anim Conserv 3:191–199. doi:10.1017/s1367943000000901

    Article  Google Scholar 

  137. Waits LP, Paetkau D (2005) Noninvasive genetic sampling tools for wildlife biologists: a review of applications and recommendations for accurate data collection. J Wildl Manag 69(4):1419–1433. doi:10.2193/0022-541x(2005)69[1419:ngstfw]2.0.co;2

    Article  Google Scholar 

  138. Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10(1):249–256

    PubMed  CAS  Article  Google Scholar 

  139. Waits LP, Buckley-Beason VA, Johnson WE, Onorato D, McCarthy TOM (2006) A select panel of polymorphic microsatellite loci for individual identification of snow leopards (Panthera uncia). Mol Ecol Notes 7(2):311–314. doi:10.1111/j.1471-8286.2006.01591.x

    Article  CAS  Google Scholar 

  140. Walker RS, Novaro AJ, Perovic P, Palacios R, Donadio E, Lucherini M, Pia M, Lopez MS (2007) Diets of three species of Andean carnivores in high-altitude deserts of Argentina. J Mammal 88(2):519–525. doi:10.1644/06-mamm-a-172r.1

    Article  Google Scholar 

  141. Wasser SK, Davenport B, Ramage ER, Hunt KE, Parker M, Clarke C, Stenhouse G (2004) Scat detection dogs in wildlife research and management: application to grizzly and black bears in the Yellowhead Ecosystem, Alberta, Canada. Can J Zool Rev Can Zool 82(3):475–492. doi:10.1139/z04-020

    Article  Google Scholar 

  142. Weckel M, Giuliano W, Silver S (2006a) Cockscomb revisited: jaguar diet in the Cockscomb Basin Wildlife Sanctuary, Belize. Biotropica 38(5):687–690. doi:10.1111/j.1744-7429.2006.00190.x

    Article  Google Scholar 

  143. Weckel M, Giuliano W, Silver S (2006b) Jaguar (Panthera onca) feeding ecology: distribution of predator and prey through time and space. J Zool 270(1):25–30. doi:10.1111/j.1469-7998.2006.00106.x

    Google Scholar 

  144. White GC, Burnham KP (1999) Program MARK: survival estimation from populations of marked animals. Bird Stud 46:120–139

    Google Scholar 

  145. Wilson KR, Anderson DR (1985) Evaluation of 2 density estimators of small mammal population-size. J Mammal 66(1):13–21. doi:10.2307/1380951

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Edward J. Heske, Ken N. Paige and Karen M. Kapheim, as well as three anonymous reviewers for thoughtful comments on this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Torrey W. Rodgers.

Additional information

Communicated by P. C. Alves

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rodgers, T.W., Janečka, J.E. Applications and techniques for non-invasive faecal genetics research in felid conservation. Eur J Wildl Res 59, 1–16 (2013). https://doi.org/10.1007/s10344-012-0675-6

Download citation

Keywords

  • Conservation
  • Elusive species
  • Faecal DNA
  • Felidae
  • Non-invasive genetics