European Journal of Wildlife Research

, Volume 59, Issue 1, pp 1–16 | Cite as

Applications and techniques for non-invasive faecal genetics research in felid conservation



Non-invasive genetic techniques utilising DNA extracted from faeces hold great promise for felid conservation research. These methods can be used to establish species distributions, model habitat requirements, analyse diet, estimate abundance and population density, and form the basis for population, landscape and conservation genetic analyses. Due to the elusive nature of most felid species, non-invasive genetic methods have the potential to provide valuable data that cannot be obtained with traditional observational or capture techniques. Thus, these methods are particularly valuable for research and conservation of endangered felid species. Here, we review recent studies that use non-invasive faecal genetic techniques to survey or study wild felids; provide an overview of field, laboratory and analysis techniques; and offer suggestions on how future non-invasive genetic studies can be expanded or improved to more effectively support conservation.


Conservation Elusive species Faecal DNA Felidae Non-invasive genetics 


  1. Adams JR, Lucash C, Schutte L, Waits LP (2007) Locating hybrid individuals in the red wolf (Canis rufus) experimental population area using a spatially targeted sampling strategy and faecal DNA genotyping. Mol Ecol 16(9):1823–1834. doi:10.1111/j.1365-294X.2007.03270.x PubMedCrossRefGoogle Scholar
  2. Anwar MB, Jackson R, Nadeem MS, Janecka JE, Hussain S, Beg MA, Muhammad G, Qayyum M (2011) Food habits of the snow leopard Panthera uncia (Schreber, 1775) in Baltistan, Northern Pakistan. Eur J Wildl Res 57(5):1077–1083. doi:10.1007/s10344-011-0521-2 CrossRefGoogle Scholar
  3. Balme GA, Hunter LTB, Slotow R (2009) Evaluating methods for counting cryptic carnivores. J Wildl Manag 73(3):433–441. doi:10.2193/2007-368 CrossRefGoogle Scholar
  4. Bellemain E, Swenson JE, Tallmon O, Brunberg S, Taberlet P (2005) Estimating population size of elusive animals with DNA from hunter-collected feces: four methods for brown bears. Conserv Biol 19(1):150–161. doi:10.1111/j.1523-1739.2005.00549.x CrossRefGoogle Scholar
  5. Bhagavatula J, Singh L (2006) Genotyping faecal samples of Bengal tiger Panthera tigris tigris for population estimation: a pilot study. BMC Genet 7:48. doi:10.1186/1471-2156-7-48 PubMedCrossRefGoogle Scholar
  6. Bonin A, Bellemain E, Bronken Eidesen P, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetics studies. Mol Ecol 13(11):3261–3273. doi:10.1111/j.1365-294X.2004.02346.x PubMedCrossRefGoogle Scholar
  7. Borchers DL, Efford MG (2008) Spatially explicit maximum likelihood methods for capture–recapture studies. Biometrics 64(2):377–385. doi:10.1111/j.1541-0420.2007.00927.x PubMedCrossRefGoogle Scholar
  8. Borthakur U, Barman RD, Das C, Basumatary A, Talukdar A, Ahmed MF, Talukdar BK, Bharali R (2011) Noninvasive genetic monitoring of tiger (Panthera tigris tigris) population of Orang National Park in the Brahmaputra floodplain, Assam, India. Eur J Wildl Res 57(3):603–613. doi:10.1007/s10344-010-0471-0 CrossRefGoogle Scholar
  9. Boulanger J, McLellan BN, Woods JG, Proctor MF, Strobeck C (2004) Sampling design and bias in DNA-based capture–mark–recapture population and density estimates of grizzly bears. J Wildl Manag 68(3):457–469. doi:10.2193/0022-541x(2004)068[0457:sdabid];2 CrossRefGoogle Scholar
  10. Bradley RD, Baker RJ (2001) A test of the genetic species concept: cytochrome-b sequences and mammals. J Mammal 82(4):960–973. doi:10.1644/1545-1542(2001)082<0960:atotgs>;2 CrossRefGoogle Scholar
  11. Broquet T, Petit E (2004) Quantifying genotyping errors in noninvasive population genetics. Mol Ecol 13(11):3601–3608. doi:10.1111/j.1365-294X.2004.02352.x PubMedCrossRefGoogle Scholar
  12. Broquet T, Menard N, Petit E (2007) Noninvasive population genetics: a review of sample source, diet, fragment length and microsatellite motif effects on amplification success and genotyping error rates. Conserv Genet 8(1):249–260. doi:10.1007/s10592-006-9146-5 CrossRefGoogle Scholar
  13. Burnham KP, Overton WS (1979) Robust estimation of population-size when capture probabilities vary among animals. Ecology 60(5):927–936. doi:10.2307/1936861 CrossRefGoogle Scholar
  14. Busby GBJ, Gottelli D, Wacher T, Marker L, Belbachir F, De Smet K, Belbachir-Bazi A, Fellous A, Belghoul M, Durant SM (2009) Genetic analysis of scat reveals leopard Panthera pardus and cheetah Acinonyx jubatus in southern Algeria. Oryx 43(03):412. doi:10.1017/s0030605309001197 CrossRefGoogle Scholar
  15. Chao A (1988) Estimating animal abundance with capture frequency data. J Wildl Manag 52(2):295–300. doi:10.2307/3801237 CrossRefGoogle Scholar
  16. Chaves PB, Graeff VG, Lion MB, Oliveira LR, Eizirik E (2012) DNA barcoding meets molecular scatology: short mtDNA sequences for standardized species assignment of carnivore noninvasive samples. Mol Ecol Resour 12(1):18–35. doi:10.1111/j.1755-0998.2011.03056.x PubMedCrossRefGoogle Scholar
  17. Cossios D, Angers B (2006) Identification of andean felid feces using PCR-RFLP. Mastozool Neotrop 13(2):239–244Google Scholar
  18. Cossios ED, Madrid A, Condori JL, Fajardo U (2007) Update on the distribution of the Andean cat Oreailurus jacobita and the pampas cat Lynchailurus colocolo in Peru. Endanger Species Res 3:313–320. doi:10.3354/esr00059 CrossRefGoogle Scholar
  19. Dalen L, Gotherstrom A, Angerbjorn A (2004) Identifying species from pieces of faeces. Conserv Genet 5(1):109–111. doi:10.1023/b:coge.0000014060.54070.45 CrossRefGoogle Scholar
  20. Davis BW, Raudsepp T, Wilkerson AJP, Agarwala R, Schaffer AA, Houck M, Chowdhary BP, Murphy WJ (2009) A high-resolution cat radiation hybrid and integrated FISH mapping resource for phylogenomic studies across Felidae. Genomics 93(4):299–304. doi:10.1016/j.ygeno.2008.09.010 PubMedCrossRefGoogle Scholar
  21. Davison A, Birks JDS, Brookes RC, Braithwaite TC, Messenger JE (2002) On the origin of faeces: morphological versus molecular methods for surveying rare carnivores from their scats. J Zool 257:141–143. doi:10.1017/s0952836902000730 CrossRefGoogle Scholar
  22. Dillon A, Kelly MJ (2008) Ocelot home range, overlap and density: comparing radio telemetry with camera trapping. J Zool 275(4):391–398. doi:10.1111/j.1469-7998.2008.00452.x CrossRefGoogle Scholar
  23. Ebert C, Knauer F, Storch I, Hohmann U (2010) Individual heterogeneity as a pitfall in population estimates based on non-invasive genetic sampling: a review and recommendations. Wildl Biol 16(3):225–240. doi:10.2981/09-108 CrossRefGoogle Scholar
  24. Eggert LS, Eggert JA, Woodruff DS (2003) Estimating population sizes for elusive animals: the forest elephants of Kakum National Park, Ghana. Mol Ecol 12(6):1389–1402. doi:10.1046/j.1365-294X.2003.01822.x PubMedCrossRefGoogle Scholar
  25. Ernest HB, Penedo MCT, May BP, Syvanen M, Boyce WM (2000) Molecular tracking of mountain lions in the Yosemite Valley region in California: genetic analysis using microsatellites and faecal DNA. Mol Ecol 9(4):433–441. doi:10.1046/j.1365-294x.2000.00890.x PubMedCrossRefGoogle Scholar
  26. Ernest HB, Boyce WM, Bleich VC, May B, Stiver SJ, Torres SG (2003) Genetic structure of mountain lion (Puma concolor) populations in California. Conserv Genet 4(3):353–366. doi:10.1023/a:1024069014911 CrossRefGoogle Scholar
  27. Estes JA, Terborgh J, Brashares JS, Power ME, Berger J, Bond WJ, Carpenter SR, Essington TE, Holt RD, Jackson JBC, Marquis RJ, Oksanen L, Oksanen T, Paine RT, Pikitch EK, Ripple WJ, Sandin SA, Scheffer M, Schoener TW, Shurin JB, Sinclair ARE, Soule ME, Virtanen R, Wardle DA (2011) Trophic downgrading of planet Earth. Science 333(6040):301–306. doi:10.1126/science.1205106 PubMedCrossRefGoogle Scholar
  28. Farrell LE, Romant J, Sunquist ME (2000) Dietary separation of sympatric carnivores identified by molecular analysis of scats. Mol Ecol 9(10):1583–1590. doi:10.1046/j.1365-294x.2000.01037.x PubMedCrossRefGoogle Scholar
  29. Fernandez N, Delibes M, Palomares F (2006) Landscape evaluation in conservation: molecular sampling and habitat modeling for the Iberian lynx. Ecol Appl 16(3):1037–1049. doi:10.1890/1051-0761(2006)016[1037:leicms];2 PubMedCrossRefGoogle Scholar
  30. Foran DR, Crooks KR, Minta SC (1997) Species identification from scat: an unambiguous genetic method. Wildl Soc Bull 25(4):835–839Google Scholar
  31. Foster RJ, Harmsen BJ, Valdes B, Pomilla C, Doncaster CP (2010) Food habits of sympatric jaguars and pumas across a gradient of human disturbance. J Zool 280(3):309–318. doi:10.1111/j.1469-7998.2009.00663.x CrossRefGoogle Scholar
  32. Frankham R, Ralls K (1998) Conservation biology—inbreeding leads to extinction. Nature 392(6675):441–442. doi:10.1038/33022 CrossRefGoogle Scholar
  33. Frantz AC, Pope LC, Carpenter PJ, Roper TJ, Wilson GJ, Delahay RJ, Burke T (2003) Reliable microsatellite genotyping of the Eurasian badger (Meles meles) using faecal DNA. Mol Ecol 12(6):1649–1661. doi:10.1046/j.1365-294X.2003.01848.x PubMedCrossRefGoogle Scholar
  34. Goodrich JM, Miquelle DG, Smirnov EN, Kerley LL, Quigley HB, Hornocker MG (2010) Spatial structure of Amur (Siberian) tigers (Panthera tigris altaica) on Sikhote-Alin Biosphere Zapovednik, Russia. J Mammal 91(3):737–748. doi:10.1644/09-mamm-a-293.1 CrossRefGoogle Scholar
  35. Gottelli D, Wang JL, Bashir S, Durant SM (2007) Genetic analysis reveals promiscuity among female cheetahs. Proc R Soc B Biol Sci 274(1621):1993–2001. doi:10.1098/rspb.2007.0502 CrossRefGoogle Scholar
  36. Greenwood JJD (1996) Basic techniques. Ecological census techniques: a handbook. Cambridge University Press, CambridgeGoogle Scholar
  37. Guo DC, Milewicz DM (2003) Methodology for using a universal primer to label amplified DNA segments for molecular analysis. Biotechnol Lett 25(24):2079–2083. doi:10.1023/B:BILE.0000007075.24434.5e PubMedCrossRefGoogle Scholar
  38. Haag T, Santos AS, De Angelo C, Srbek-Araujo AC, Sana DA, Morato RG, Salzano FM, Eizirik E (2009) Development and testing of an optimized method for DNA-based identification of jaguar (Panthera onca) and puma (Puma concolor) faecal samples for use in ecological and genetic studies. Genetica 136(3):505–512. doi:10.1007/s10709-008-9347-6 PubMedCrossRefGoogle Scholar
  39. Haag T, Santos AS, Sana DA, Morato RG, Cullen L Jr, Crawshaw PG Jr, De Angelo C, Di Bitetti MS, Salzano FM, Eizirik E (2010) The effect of habitat fragmentation on the genetic structure of a top predator: loss of diversity and high differentiation among remnant populations of Atlantic Forest jaguars (Panthera onca). Mol Ecol 19(22):4906–4921. doi:10.1111/j.1365-294X.2010.04856.x PubMedCrossRefGoogle Scholar
  40. Hebert L, Darden SK, Pedersen BV, Dabelsteen T (2011) Increased DNA amplification success of non-invasive genetic samples by successful removal of inhibitors from faecal samples collected in the field. Conserv Genet Resour 3(1):41–43. doi:10.1007/s12686-010-9280-8 CrossRefGoogle Scholar
  41. Hoss M, Kohn M, Paabo S, Knauer F, Schroder W (1992) Excrement analysis by PCR. Nature 359(6392):199–199. doi:10.1038/359199a0 PubMedCrossRefGoogle Scholar
  42. Hussain S (2000) Protecting the snow leopard and enhancing farmers' livelihoods: a pilot insurance scheme in Baltistan. Mt Res Dev 20(3):226–231. doi:10.1659/0276-4741(2000)020[0226:ptslae];2 CrossRefGoogle Scholar
  43. Hussain S (2003) The status of the snow leopard in Pakistan and its conflict with local farmers. Oryx 37(1):26–33. doi:10.1017/s0030605303000085 CrossRefGoogle Scholar
  44. Inskip C, Zimmermann A (2009) Review human–felid conflict: a review of patterns and priorities worldwide. Oryx 43(1):18–34. doi:10.1017/s003060530899030x CrossRefGoogle Scholar
  45. Janečka JE, Blankenship TL, Hirth DH, Tewes ME, Kilpatrick CW, Grassman LI (2006) Kinship and social structure of bobcats (Lynx rufus) inferred from microsatellite and radio-telemetry data. J Zool 269(4):494–501. doi:10.1111/j.1469-7998.2006.00099.x CrossRefGoogle Scholar
  46. Janečka JE, Blankenship TL, Hirth DH, William Kilpatrick C, Tewes ME, Grassman LI (2007a) Evidence for male-biased dispersal in bobcats Lynx rufus using relatedness analysis. Wild Biol 13(1):38–47. doi:10.2981/0909-6396(2007)13[38:efmdib];2 CrossRefGoogle Scholar
  47. Janečka JE, Tewes ME, Laack LL, Grassman LI, Haines AM, Honeycutt RL (2007b) Small effective population sizes of two remnant ocelot populations (Leopardus pardalis albescens) in the United States. Conserv Genet 9(4):869–878. doi:10.1007/s10592-007-9412-1 CrossRefGoogle Scholar
  48. Janečka JE, Jackson R, Yuquang Z, Diqiang L, Munkhtsog B, Buckley-Beason V, Murphy WJ (2008) Population monitoring of snow leopards using noninvasive collection of scat samples: a pilot study. Anim Conserv 11(5):401–411. doi:10.1111/j.1469-1795.2008.00195.x CrossRefGoogle Scholar
  49. Janečka J, Munkhtsog B, Jackson R, Naranbaatar G, Mallon D, Murphy W (2011a) Comparison of noninvasive genetic and camera-trapping techniques for surveying snow leopards. J Mammal 92(4):771–783. doi:10.1644/10-MAMM-A-036.1 CrossRefGoogle Scholar
  50. Janečka JE, Tewes ME, Laack LL, Caso A, Grassman LI Jr, Haines AM, Shindle DB, Davis BW, Murphy WJ, Honeycutt RL (2011b) Reduced genetic diversity and isolation of remnant ocelot populations occupying a severely fragmented landscape in southern Texas. Anim Conserv. doi:10.1111/j.1469-1795.2011.00475.x
  51. Karanth KU, Nichols JD (1998) Estimation of tiger densities in India using photographic captures and recaptures. Ecology 79(8):2852–2862. doi:10.1890/0012-9658(1998)079[2852:eotdii];2 CrossRefGoogle Scholar
  52. Karmacharya DB, Thapa K, Shrestha R, Dhakal M, Janečka JE (2011) Noninvasive genetic population survey of snow leopards (Panthera uncia) in Kangchenjunga Conservation Area, Shey Phoksundo National Park and surrounding buffer zones of Nepal. BMC Research Notes 4(516):1–8. doi:10.1186/1756-0500-4-516
  53. Kelly MJ, Betsch J, Wultsch C, Mesa B, Mills LS (2012) Noninvasive sampling for carnivores. In: Biotani L, Powell RA (eds) Carnivore ecology and conservation: a hand-book of techniques. Oxford University Press, Oxford, p 47–67Google Scholar
  54. Kery M, Gardner B, Stoeckle T, Weber D, Royle JA (2011) Use of spatial capture–recapture modeling and DNA data to estimate densities of elusive animals. Conserv Biol 25(2):356–364. doi:10.1111/j.1523-1739.2010.01616.x PubMedGoogle Scholar
  55. Knapp SM, Craig BA, Waits LP (2009) Incorporating genotyping error into non-invasive DNA-based mark–recapture population estimates. J Wildl Manag 73(4):598–604. doi:10.2193/2007-156 CrossRefGoogle Scholar
  56. Kohn MH, Wayne RK (1997) Facts from feces revisited. Trends Ecol Evol 12(6):223–227. doi:10.1016/s0169-5347(97)01050-1 PubMedCrossRefGoogle Scholar
  57. Kohn MH, York EC, Kamradt DA, Haugt G, Sauvajot RM, Wayne RK (1999) Estimating population size by genotyping faeces. Proc R Soc Lond Ser B Biol Sci 266(1420):657–663CrossRefGoogle Scholar
  58. Kurose N, Masuda R, Tatara M (2005) Fecal DNA analysis for identifying species and sex of sympatric carnivores: a noninvasive method for conservation on the Tsushima islands, Japan. J Hered 96(6):688–697. doi:10.1093/jhered/esi124 PubMedCrossRefGoogle Scholar
  59. Leberg PL, Carloss MR, Dugas LJ, Pilgrim KL, Mills LS, Green MC, Scognamillo D (2004) Recent record of a cougar (Puma concolor) in Louisiana, with notes on diet, based on analysis of fecal materials. Southeast Nat 3(4):653–658. doi:10.1656/1528-7092(2004)003[0653:rroacp];2 CrossRefGoogle Scholar
  60. Lovari S, Boesi R, Minder I, Mucci N, Randi E, Dematteis A, Ale SB (2009) Restoring a keystone predator may endanger a prey species in a human-altered ecosystem: the return of the snow leopard to Sagarmatha National Park. Anim Conserv 12(6):559–570CrossRefGoogle Scholar
  61. Lukacs PM (2009) Closed population capture–recapture models. In: Cooch E, White G (eds) Program MARK: a gentle introduction. p 14.1–14.38. Accessed 22 June 2012
  62. Lukacs PM, Burnham KP (2005a) Estimating population size from DNA-based closed capture–recapture data incorporating genotyping error. J Wildl Manag 69(1):396–403. doi:10.2193/0022-541x(2005)069<0396:epsfdc>;2CrossRefGoogle Scholar
  63. Lukacs PM, Burnham KP (2005b) Review of capture–recapture methods applicable to noninvasive genetic sampling. Mol Ecol 14(13):3909–3919. doi:10.1111/j.1365-294X.2005.02717.x PubMedCrossRefGoogle Scholar
  64. Macdonald DW (1980) Patterns of scent marking with urine and faeces amongst carnivore communities. In: Stoddart DM (ed) Olfaction in mammals. Academic Press, London, p 107–135Google Scholar
  65. Macdonald D, Loveridge A (2010) The biology and conservation of wild felids. Oxford Press, UKGoogle Scholar
  66. MacKenzie DI, Nichols JD, Lachman GB, Droege S, Royle JA, Langtimm CA (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83(8):2248–2255. doi:10.2307/3072056 CrossRefGoogle Scholar
  67. Maffei L, Noss AJ (2008) How small is too small? Camera trap survey areas and density estimates for ocelots in the Bolivian chaco. Biotropica 40(1):71–75. doi:10.1111/j.1744-7429.2007.00341.x Google Scholar
  68. Marino J, Bennett M, Cossios D, Iriarte A, Lucherini M, Pliscoff P, Sillero-Zubiri C, Villalba L, Walker S (2011) Bioclimatic constraints to Andean cat distribution: a modelling application for rare species. Divers Distrib 17(2):311–322. doi:10.1111/j.1472-4642.2011.00744.x CrossRefGoogle Scholar
  69. Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7(5):639–655. doi:10.1046/j.1365-294x.1998.00374.x PubMedCrossRefGoogle Scholar
  70. Marucco F, Boitani L, Pletscher DH, Schwartz MK (2011) Bridging the gaps between non-invasive genetic sampling and population parameter estimation. Eur J Wildl Res 57(1):1–13. doi:10.1007/s10344-010-0477-7 CrossRefGoogle Scholar
  71. McKelvey KS, Schwartz MK (2004) Genetic errors associated with population estimation using non-invasive molecular tagging: problems and new solutions. J Wildl Manag 68(3):439–448. doi:10.2193/0022-541x(2004)068[0439:geawpe];2 CrossRefGoogle Scholar
  72. McKelvey KS, Schwartz MK (2005) DROPOUT: a program to identify problem loci and samples for noninvasive genetic samples in a capture-mark-recapture framework. Mol Ecol Notes 5(3):716–718. doi:10.1111/j.1471-8286.2005.01038.x CrossRefGoogle Scholar
  73. McKelvey KS, Von Kienast J, Aubry KB, Koehler GM, Maletzke BT, Squires JR, Lindquist EL, Loch S, Schwartz MK (2006) DNA analysis of hair and scat collected along snow tracks to document the presence of Canada lynx. Wildl Soc Bull 34(2):451–455. doi:10.2193/0091-7648(2006)34[451:daohas];2 CrossRefGoogle Scholar
  74. Menotti-Raymond M, David VA, Lyons LA, Schaffer AA, Tomlin JF, Hutton MK, O'Brien SJ (1999) A genetic linkage map of microsatellites in the domestic cat (Felis catus). Genomics 57(1):9–23. doi:10.1006/geno.1999.5743 PubMedCrossRefGoogle Scholar
  75. Menotti-Raymond M, David VA, Agarwala R, Schaffer AA, Stephens R, O'Brien SJ, Murphy WJ (2003a) Radiation hybrid mapping of 304 novel microsatellites in the domestic cat genome. Cytogenet Genome Res 102(1–4):272–276. doi:10.1159/000075762 PubMedCrossRefGoogle Scholar
  76. Menotti-Raymond M, David VA, Chen ZQ, Menotti KA, Sun S, Schaffer AA, Agarwala R, Tomlin JF, O'Brien SJ, Murphy WJ (2003b) Second-generation integrated genetic linkage/radiation hybrid maps of the domestic cat (Felis catus). J Hered 94(1):95–106. doi:10.1093/jhered/esg008 PubMedCrossRefGoogle Scholar
  77. Menotti-Raymond M, David VA, Schaffer AA, Tomlin JF, Eizirik E, Phillip C, Wells D, Pontius JU, Hannah SS, O'Brien SJ (2009) An autosomal genetic linkage map of the domestic cat, Felis silvestris catus. Genomics 93(4):305–313. doi:10.1016/j.ygeno.2008.11.004 PubMedCrossRefGoogle Scholar
  78. Michalski F, Valdez FP, Norris D, Zieminski C, Kashivakura CK, Trinca CS, Smith HB, Vynne C, Wasser SK, Metzger JP, Eizirik E (2011) Successful carnivore identification with faecal DNA across a fragmented Amazonian landscape. Mol Ecol Resour 11(5):862–871. doi:10.1111/j.1755-0998.2011.03031.x PubMedCrossRefGoogle Scholar
  79. Miller CR, Joyce P, Waits LP (2002) Assessing allelic dropout and genotype reliability using maximum likelihood. Genetics 160(1):357–366PubMedGoogle Scholar
  80. Miller CR, Joyce P, Waits LP (2005) A new method for estimating the size of small populations from genetic mark–recapture data. Mol Ecol 14(7):1991–2005. doi:10.1111/j.1365-294X.2005.02577.x PubMedCrossRefGoogle Scholar
  81. Mills LS, Citta JJ, Lair KP, Schwartz MK, Tallmon DA (2000a) Estimating animal abundance using noninvasive DNA sampling: promise and pitfalls. Ecol Appl 10(1):283–294. doi:10.2307/2641002 CrossRefGoogle Scholar
  82. Mills LS, Pilgrim KL, Schwartz MK, McKelvey K (2000b) Identifying lynx and other North American felids based on mtDNA analysis. Conserv Genet 1(3):285–288. doi:10.1023/a:1011574209558 CrossRefGoogle Scholar
  83. Miotto RA, Rodrigues FP, Ciocheti G, Galetti PM (2007) Determination of the minimum population size of pumas (Puma concolor) through fecal DNA analysis in two protected cerrado areas in the Brazilian Southeast. Biotropica 39(5):647–654. doi:10.1111/j.1744-7429.2007.00315.x CrossRefGoogle Scholar
  84. Mondol S, Navya R, Athreya V, Sunagar K, Selvaraj VM, Ramakrishnan U (2009a) A panel of microsatellites to individually identify leopards and its application to leopard monitoring in human dominated landscapes. BMC Genet 10:79. doi:10.1186/1471-2156-10-79 PubMedCrossRefGoogle Scholar
  85. Mondol S, Ullas Karanth K, Samba Kumar N, Gopalaswamy AM, Andheria A, Ramakrishnan U (2009b) Evaluation of non-invasive genetic sampling methods for estimating tiger population size. Biol Conserv 142(10):2350–2360. doi:10.1016/j.biocon.2009.05.014 CrossRefGoogle Scholar
  86. Mukherjee S, Krishnan A, Tamma K, Home C, Navya R, Joseph S, Das A, Ramakrishnan U (2010) Ecology driving genetic variation: a comparative phylogeography of jungle cat (Felis chaus) and leopard cat (Prionailurus bengalensis) in India. PLoS One 5(10):e13724. doi:10.1371/journal.pone.0013724 PubMedCrossRefGoogle Scholar
  87. Nagata J, Aramilev VV, Belozor A, Sugimoto T, McCullough DR (2005) Fecal genetic analysis using PCR-RFLP of cytochrome b to identify sympatric carnivores, the tiger Panthera tigris and the leopard Panthera pardus, in far eastern Russia. Conserv Genet 6(5):863–866. doi:10.1007/s10592-005-9038-0 CrossRefGoogle Scholar
  88. Napolitano C, Bennett M, Johnson WE, O'Brien SJ, Marquet PA, Barria I, Poulin E, Iriarte A (2008) Ecological and biogeographical inferences on two sympatric and enigmatic Andean cat species using genetic identification of faecal samples. Mol Ecol 17(2):678–690. doi:10.1111/j.1365-294X.2007.03606.x PubMedCrossRefGoogle Scholar
  89. Novack AJ, Main MB, Sunquist ME, Labisky RF (2005) Foraging ecology of jaguar (Panthera onca) and puma (Puma concolor) in hunted and non-hunted sites within the Maya Biosphere Reserve, Guatemala. J Zool 267:167–178. doi:10.1017/s0952836905007338 CrossRefGoogle Scholar
  90. Nowell K, Jackson P (1996) Wild cats: status survey and action plan. International Union for Conservation of Nature and Natural Resources, Gland, SwitzerlandGoogle Scholar
  91. Nunez-Perez R (2011) Estimating jaguar population density using camera-traps: a comparison with radio-telemetry estimates. J Zool 285(1):39–45. doi:10.1111/j.1469-7998.2011.00812.x Google Scholar
  92. Obbard ME, Howe EJ, Kyle CJ (2010) Empirical comparison of density estimators for large carnivores. J Appl Ecol 47(1):76–84. doi:10.1111/j.1365-2664.2009.01758.x CrossRefGoogle Scholar
  93. Oliveira R, Castro D, Godinho R, Luikart G, Alves PC (2010) Species identification using a small nuclear gene fragment: application to sympatric wild carnivores from South-western Europe. Conserv Genet 11(3):1023–1032. doi:10.1007/s10592-009-9947-4 CrossRefGoogle Scholar
  94. Onorato D, White C, Zager P, Waits LP (2006) Detection of predator presence at elk mortality sites using mtDNA analysis of hair and scat samples. Wildl Soc Bull 34(3):815–820. doi:10.2193/0091-7648(2006)34[815:doppae];2 CrossRefGoogle Scholar
  95. Onorato D, Desimone R, White C, Waits LP (2011) Genetic assessment of paternity and relatedness in a managed population of cougars. J Wildl Manag 75(2):378–384. doi:10.1002/jwmg.43 CrossRefGoogle Scholar
  96. Otis DL, Burnham KP, White GC, Anderson DR (1978) Statistical inference from capture data on closed animal populations. Wildl Monogr (62):1–135Google Scholar
  97. Paetkau D (2003) An empirical exploration of data quality in DNA-based population inventories. Mol Ecol 12(6):1375–1387. doi:10.1046/j.1365-294X.2003.01820.x PubMedCrossRefGoogle Scholar
  98. Palomares F, Godoy JA, Piriz A, O'Brien SJ, Johnson WE (2002) Faecal genetic analysis to determine the presence and distribution of elusive carnivores: design and feasibility for the Iberian lynx. Mol Ecol 11(10):2171–2182. doi:10.1046/j.1365-294X.2002.01608.x PubMedCrossRefGoogle Scholar
  99. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6(1):288–295. doi:10.1111/j.1471-8286.2005.01155.x CrossRefGoogle Scholar
  100. Perez I, Geffen E, Mokady O (2006) Critically endangered Arabian leopards Panthera pardus nimr in Israel: estimating population parameters using molecular scatology. Oryx 40(03):295. doi:10.1017/s0030605306000846 CrossRefGoogle Scholar
  101. Perovic P, Walker S, Novaro A (2003) New records of the endangered Andean mountain cat in northern Argentina. Oryx 37(3):374–377. doi:10.1017/s0030605303000644 CrossRefGoogle Scholar
  102. Petit E, Valiere N (2006) Estimating population size with noninvasive capture–mark–recapture data. Conserv Biol 20(4):1062–1073. doi:10.1111/j.1523-1739.2006.00417.x PubMedCrossRefGoogle Scholar
  103. Phillips SJ, Dudik M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31(2):161–175. doi:10.1111/j.0906-7590.2008.5203.x CrossRefGoogle Scholar
  104. Phillips S, Anderson R, Schapire R (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190(3–4):231–259. doi:10.1016/j.ecolmodel.2005.03.026 CrossRefGoogle Scholar
  105. Piggott MP, Taylor AC (2003) Remote collection of animal DNA and its applications in conservation management and understanding the population biology of rare and cryptic species. Wildl Res 30(1):1–13. doi:10.1071/wr02077 CrossRefGoogle Scholar
  106. Pilgrim KL, McKelvey KS, Riddle AE, Schwartz MK (2005) Felid sex identification based on noninvasive genetic samples. Mol Ecol Notes 5(1):60–61. doi:10.1111/j.1471-8286.2004.00831.x CrossRefGoogle Scholar
  107. Pires AE, Fernandes ML (2003) Last lynxes in Portugal? Molecular approaches in a pre-extinction scenario. Conserv Genet 4(4):525–532. doi:10.1023/a:1024762013876 CrossRefGoogle Scholar
  108. Polisar J, Maxit I, Scognamillo D, Farrell L, Sunquist ME, Eisenberg JF (2003) Jaguars, pumas, their prey base, and cattle ranching: ecological interpretations of a management problem. Biol Conserv 109(2):297–310. doi:10.1016/s0006-3207(02)00157-x CrossRefGoogle Scholar
  109. Reddy PA, Kumaraguru A, Yadav PR, Ramyashree A, Bhagavatula J, Shivaji S (2010) Studies to determine presence or absence of the Indian tiger (Panthera tigris tigris) in Kawal Wildlife Sanctuary, India. Eur J Wildl Res 57(3):517–522. doi:10.1007/s10344-010-0460-3 CrossRefGoogle Scholar
  110. Reed DH, Nicholas AC, Stratton GE (2007) Genetic quality of individuals impacts population dynamics. Anim Conserv 10(3):275–283. doi:10.1111/j.1469-1795.2007.00120.x CrossRefGoogle Scholar
  111. Roques S, Adrados B, Chavez C, Keller C, Magnusson WE, Palomares F, Godoy JA (2011) Identification of neotropical felid faeces using RCP–PCR. Mol Ecol Resour 11(1):171–175. doi:10.1111/j.1755-0998.2010.02878.x PubMedCrossRefGoogle Scholar
  112. Royle JA, Young KV (2008) A hierarchical model for spatial capture–recapture data. Ecology 89(8):2281–2289. doi:10.1890/07-0601.1 PubMedCrossRefGoogle Scholar
  113. Royle JA, Nichols JD, Karanth KU, Gopalaswamy AM (2009) A hierarchical model for estimating density in camera-trap studies. J Appl Ecol 46(1):118–127. doi:10.1111/j.1365-2664.2008.01578.x CrossRefGoogle Scholar
  114. Ruell EW, Crooks KR (2007) Evaluation of noninvasive genetic sampling methods for felid and canid populations. J Wildl Manag 71(5):1690–1694. doi:10.2193/2006-061 CrossRefGoogle Scholar
  115. Ruell EW, Riley SPD, Douglas MR, Pollinger JP, Crooks KR (2009) Estimating bobcat population sizes and densities in a fragmented urban landscape using noninvasive capture–recapture sampling. J Mammal 90(1):129–135. doi:10.1644/07-mamm-a-249.1 CrossRefGoogle Scholar
  116. Russello MA, Gladyshev E, Miquelle D, Caccone A (2004) Potential genetic consequences of a recent bottleneck in the Amur tiger of the Russian far east. Conserv Genet 5(5):707–713. doi:10.1007/s10592-004-1860-2 CrossRefGoogle Scholar
  117. Schwartz MK, Mills LS, McKelvey KS, Ruggiero LF, Allendorf FW (2002) DNA reveals high dispersal synchronizing the population dynamics of Canada lynx. Nature 415(6871):520–522. doi:10.1038/415520a PubMedCrossRefGoogle Scholar
  118. Schwartz MK, Luikart G, Waples RS (2007) Genetic monitoring as a promising tool for conservation and management. Trends Ecol Evol 22(1):25–33. doi:10.1016/j.tree.2006.08.009 PubMedCrossRefGoogle Scholar
  119. Sharma R, Stuckas H, Bhaskar R, Rajput S, Khan I, Goyal SP, Tiedemann R (2008) mtDNA indicates profound population structure in Indian tiger (Panthera tigris tigris). Conserv Genet 10(4):909–914. doi:10.1007/s10592-008-9568-3 CrossRefGoogle Scholar
  120. Sharma R, Stuckas H, Bhaskar R, Khan I, Goyal SP, Tiedemann R (2011) Genetically distinct population of Bengal tiger (Panthera tigris tigris) in Terai Arc Landscape (TAL) of India. Mamm Biol 76(4):484–490. doi:10.1016/j.mambio.2010.10.005 Google Scholar
  121. Shehzad W, McCarthy TM, Pompanon F, Purevjav L, Coissac E, Riaz T, Taberlet P (2012a) Prey preference of snow leopard (Panthera uncia) in South Gobi, Mongolia. PLoS One 7(2). doi:10.1371/journal.pone.0032104
  122. Shehzad W, Riaz T, Nawaz MA, Miquel C, Poillot C, Shah SA, Pompanon F, Coissac E, Taberlet P (2012b) Carnivore diet analysis based on next-generation sequencing: application to the leopard cat (Prionailurus bengalensis) in Pakistan. Mol Ecol 21(8):1951–1965. doi:10.1111/j.1365-294X.2011.05424.x PubMedCrossRefGoogle Scholar
  123. Smith DA, Ralls K, Hurt A, Adams B, Parker M, Davenport B, Smith MC, Maldonado JE (2003) Detection and accuracy rates of dogs trained to find scats of San Joaquin kit foxes (Vulpes macrotis mutica). Anim Conserv 6:339–346. doi:10.1017/s136794300300341x CrossRefGoogle Scholar
  124. Soisalo MK, Cavalcanti SMC (2006) Estimating the density of a jaguar population in the Brazilian Pantanal using camera-traps and capture–recapture sampling in combination with GPS radio-telemetry. Biol Conserv 129(4):487–496. doi:10.1016/j.biocon.2005.11.023 CrossRefGoogle Scholar
  125. Sollmann R, Furtado MM, Gardner B, Hofer H, Jacomo ATA, Torres NM, Silveira L (2011) Improving density estimates for elusive carnivores: accounting for sex-specific detection and movements using spatial capture–recapture models for jaguars in central Brazil. Biol Conserv 144(3):1017–1024. doi:10.1016/j.biocon.2010.12.011 CrossRefGoogle Scholar
  126. Spong G, Johansson M, Bjorklund M (2000) High genetic variation in leopards indicates large and long-term stable effective population size. Mol Ecol 9(11):1773–1782. doi:10.1046/j.1365-294x.2000.01067.x PubMedCrossRefGoogle Scholar
  127. Sugimoto T, Nagata J, Aramilev VV, McCullough DR (2012) Population size estimation of Amur tigers in Russian Far East using noninvasive genetic samples. J Mammal 93(1):93–101. doi:10.1644/10-mamm-a-368.1 CrossRefGoogle Scholar
  128. Sunquist ME, Sunquist F (2002) Wild cats of the world. University of Chicago Press, ChicagoGoogle Scholar
  129. Taberlet P, Fumagalli L (1996) Owl pellets as a source of DNA for genetic studies of small mammals. Mol Ecol 5(2):301–305. doi:10.1111/j.1365-294X.1996.tb00318.x PubMedGoogle Scholar
  130. Taberlet P, Waits LP, Luikart G (1999) Noninvasive genetic sampling: look before you leap. Trends Ecol Evol 14(8):323–327PubMedCrossRefGoogle Scholar
  131. Tende T, Ottosson U, Hansson B, Akesson M, Bensch S (2010) Population size of lions in Yankari Game Reserve as revealed by faecal DNA sampling. Afr J Ecol 48(4):949–952. doi:10.1111/j.1365-2028.2009.01196.x CrossRefGoogle Scholar
  132. Terborgh J, Estes JA, Paquet P, Ralls K, Boyd-Heger D, Miller BJ, Noss RF (1999) The role of top carnivores in regulating terrestrial ecosystems. In: Soulé, ME, Terborgh, J (eds.) Continental conservation: Scientific foundation of regional reserve networks. Island Press, Washington DC, USA, p 65–98Google Scholar
  133. Thompson CM, Royle JA, Garner JD (2012) A framework for inference about carnivore density from unstructured spatial sampling of scat using detector dogs. J Wildl Manag 76(4):863–871. doi:10.1002/jwmg.317 CrossRefGoogle Scholar
  134. Valiere N (2002) GIMLET: a computer program for analysing genetic individual identification data. Mol Ecol Notes 2(3):377–379. doi:10.1046/j.1471-8286.2002.00228.x CrossRefGoogle Scholar
  135. Valiere N, Bonenfant C, Toigo C, Luikart G, Gaillard J-M, Klein F (2007) Importance of a pilot study for non-invasive genetic sampling: genotyping errors and population size estimation in red deer. Conserv Genet 8(1):69–78. doi:10.1007/s10592-006-9149-2 CrossRefGoogle Scholar
  136. Waits JL, Leberg PL (2000) Biases associated with population estimation using molecular tagging. Anim Conserv 3:191–199. doi:10.1017/s1367943000000901 CrossRefGoogle Scholar
  137. Waits LP, Paetkau D (2005) Noninvasive genetic sampling tools for wildlife biologists: a review of applications and recommendations for accurate data collection. J Wildl Manag 69(4):1419–1433. doi:10.2193/0022-541x(2005)69[1419:ngstfw];2 CrossRefGoogle Scholar
  138. Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10(1):249–256PubMedCrossRefGoogle Scholar
  139. Waits LP, Buckley-Beason VA, Johnson WE, Onorato D, McCarthy TOM (2006) A select panel of polymorphic microsatellite loci for individual identification of snow leopards (Panthera uncia). Mol Ecol Notes 7(2):311–314. doi:10.1111/j.1471-8286.2006.01591.x CrossRefGoogle Scholar
  140. Walker RS, Novaro AJ, Perovic P, Palacios R, Donadio E, Lucherini M, Pia M, Lopez MS (2007) Diets of three species of Andean carnivores in high-altitude deserts of Argentina. J Mammal 88(2):519–525. doi:10.1644/06-mamm-a-172r.1 CrossRefGoogle Scholar
  141. Wasser SK, Davenport B, Ramage ER, Hunt KE, Parker M, Clarke C, Stenhouse G (2004) Scat detection dogs in wildlife research and management: application to grizzly and black bears in the Yellowhead Ecosystem, Alberta, Canada. Can J Zool Rev Can Zool 82(3):475–492. doi:10.1139/z04-020 CrossRefGoogle Scholar
  142. Weckel M, Giuliano W, Silver S (2006a) Cockscomb revisited: jaguar diet in the Cockscomb Basin Wildlife Sanctuary, Belize. Biotropica 38(5):687–690. doi:10.1111/j.1744-7429.2006.00190.x CrossRefGoogle Scholar
  143. Weckel M, Giuliano W, Silver S (2006b) Jaguar (Panthera onca) feeding ecology: distribution of predator and prey through time and space. J Zool 270(1):25–30. doi:10.1111/j.1469-7998.2006.00106.x Google Scholar
  144. White GC, Burnham KP (1999) Program MARK: survival estimation from populations of marked animals. Bird Stud 46:120–139Google Scholar
  145. Wilson KR, Anderson DR (1985) Evaluation of 2 density estimators of small mammal population-size. J Mammal 66(1):13–21. doi:10.2307/1380951 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Animal BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical SciencesTexas A&M UniversityCollege StationUSA

Personalised recommendations