European Journal of Wildlife Research

, Volume 58, Issue 5, pp 761–780 | Cite as

The implications of selenium deficiency for wild herbivore conservation: a review

  • W. T. FlueckEmail author
  • J. M. Smith-Flueck
  • J. Mionczynski
  • B. J. Mincher


Selenium (Se) is required at a fundamental physiological level in all animals. Adequate levels of Se are necessary for proper bone metabolism, iodine metabolism, immune function, reproductive success, and recruitment. Selenium is a component of enzymes which scavenge oxidative free radicals that would otherwise degrade cell membranes. Severe deficiency results in obvious symptoms such as white muscle disease in ungulates. However, more frequently, deficiency may be chronic and subclinical. Individuals then display no obvious signs of malady, yet performance suffers until their populations decline without apparent cause or through proximate factors which obscure underlying primary factors. Although well known in domestic stock, the link between population performance and Se deficiency in wild populations has been difficult to firmly establish. Confounding factors include the role of vitamin E, which also acts as an antioxidant to mitigate the need for Se under some circumstances; changing Se requirements at changing times in animal life history; changing Se requirements in relation to pollution levels and other factors causing oxidative stress; and the non-uniform distribution of Se in its various chemical forms in the environment. The latter point is especially important to wild populations that have been reduced to remnant portions of their previous range. Here, we have reviewed the literature of Se in wildlife as well as provided an introduction to Se in physiology and Se behavior in the environment for the wildlife researcher and manager. We conclude that unrecognized Se deficiency may often impede optimal population performance, and we provide recommendations for habitat analysis with regard to Se which can be used in future research. Finally, evidence that the amount of available Se in the environment is decreasing from anthropogenic causes is shown.


Biogeochemical cycle Environmental chemistry Iodine Micronutrient deficiency Nutritional ecology Nutritional muscular dystrophy Selenium White muscle disease Wild ungulates Wildlife conservation 



We greatly appreciate the many constructive comments from three anonymous reviewers.


  1. Aastrup P, Riget F, Dietz R, Asmund G (2000) Lead, zinc, cadmium, mercury, selenium and copper in Greenland caribou and reindeer (Rangifer tarandus). Sci Total Environ 245:149–159PubMedCrossRefGoogle Scholar
  2. Alexander TL (1986) Management and diseases of deer. Veterinary Deer Society, LondonGoogle Scholar
  3. Allaway WH (1970) Sulphur–selenium relationships in soils and plants. Sulphur Inst J 6:3–5Google Scholar
  4. Allaway WH, Cary EE, Ehlig CF (1967) The cycling of low levels of selenium in soils, plants and animals. In: Muth OH, Oldfield JE, Weswig PH (eds) Selenium in biomedicine. AVI Publishing, Westport, pp. 273–296Google Scholar
  5. Allaway WH, Hodgson JF (1964) Symposium on nutrition, forage and pastures: selenium in forages as related to the geographic distribution of muscular dystrophy in livestock. J Anim Sci 23:271–277Google Scholar
  6. Allen ME, Ullrey DE (2004) Relationships among nutrition and reproduction and relevance for wild animals. Zoo Biol 23:475–487CrossRefGoogle Scholar
  7. Ambe S, Chen SY, Ohkubo Y, Kobayashi Y, Iwamoto M, Ambe F (1992) Application of the radioactive multitracer technique to a study of adsorption of metal ions on γ-Fe2O3. Chem Lett 21:1059–1062Google Scholar
  8. Andren AW, Klein DH, Talmi Y (1975) Selenium in coal-fired steam plant emissions. Environ Sci Technol 9:856–858CrossRefGoogle Scholar
  9. Andrews ED, Hartley WJ, Grant AB (1968) Selenium-responsive diseases of animals in New Zealand. NZ Vet J 16:3–17CrossRefGoogle Scholar
  10. Arthur JR (2000) The glutathione peroxidases. Cell Mol Life Sci 57:1825–1835PubMedCrossRefGoogle Scholar
  11. Arthur JR, Beckett GJ, Mitchell JH (1999) The interactions between selenium and iodine deficiencies in man and animals. Nutr Res Rev 12:55–73PubMedCrossRefGoogle Scholar
  12. Atkinson R, Aschmann SM, Hasegawa D, Thompson-Eagle ET, Frankenberger WT Jr (1990) Kinetics of the atmospherically important reactions of dimethyl selenide. Environ Sci Technol 24:1326–1332CrossRefGoogle Scholar
  13. Backhaus B, Backhaus R (1983) The cadmium-content of roe deer in the Egge mountains. Zeits Jagdwiss 29:213–218Google Scholar
  14. Bakonyi T, Radak Z (2004) High altitude and free radicals. J Sports Sci Med 3:64–69Google Scholar
  15. Barkes L, Fleming RW (1974) Production of dimethylselenide gas from inorganic selenium by eleven soil fungi. Bull Environ Contam Tox 12:308–311CrossRefGoogle Scholar
  16. Barry TN (1983) Iodine. In: Grace ND (ed) The mineral requirements of grazing ruminants. Occasional Publication No. 9. New Zealand Society of Animal Production, HamiltonGoogle Scholar
  17. Beckett GJ, Arthur JR (2005) Selenium and endocrine systems. J Endocrinol 184:455–465PubMedCrossRefGoogle Scholar
  18. Bell PF, Parker DR, Page AL (1992) Contrasting selenate sulfate interaction in selenium accumulating and nonaccumulating plant species. Soil Sci Soc Am J 56:1818–1824CrossRefGoogle Scholar
  19. Berger K, Mohry H, Schuster H (1989) Geoökologische Stoffflüsse und Konsequenzen anthropogener Aktivitäten in der Landschaft. VEB Deutscher Verlag f Grundstoffindustrie, LeipzigGoogle Scholar
  20. Besselmann D, Schaub D, Wenker C, Völlm J, Robert N, Schelling C, Steinmetz H, Clauss M (2008) Juvenile mortality in captive lesser kudu (Tragelaphus imberbis) at Basle Zoo and its relation to nutrition and husbandry. J Zoo Wildl Med 39:86–91PubMedCrossRefGoogle Scholar
  21. Beytut E, Karatas F, Beytut E (2002) Lambs with white muscle disease and selenium content of soil and meadow hay in the region of Kars, Turkey. Vet J 163:214–217PubMedCrossRefGoogle Scholar
  22. Blake L, Goulding WT, Mott CJB, Johnston AE (1999) Changes in soil chemistry accompanying acidification over more than 100 years under woodland and grass at Rothamsted Experimental Station, UK. Euro J Soil Sci 50:401–412CrossRefGoogle Scholar
  23. Bodie WL, O'Gara BW (1980) A description of “weak fawn syndrome” in pronghorn antelope. Proc Bien Pronghorn Antelope Workshop 9:59–70Google Scholar
  24. Bogden JD, Kemp FW, Chen X, Stagnaro-Green A, Stein TP, Scholl TO (2006) Low-normal serum selenium early in human pregnancy predicts lower birth weight. Nutr Res 26:497–502CrossRefGoogle Scholar
  25. Borg K (1987) A review of wildlife diseases from Scandinavia. J Wildl Dis 23:527–533PubMedGoogle Scholar
  26. Brady PS, Brady LJ, Whetter PA, Ullrey DE, Fay LD (1978) The effect of dietary selenium and vitamin E on biochemical parameters and survival of young among white-tailed deer (Odocoileus virginianus). J Nutr 108:1439–1448PubMedGoogle Scholar
  27. Brown TA, Shrift A (1981) Exclusion of selenium from proteins of selenium-tolerant Astragalus species. Plant Physiol 67:1051–1053PubMedCrossRefGoogle Scholar
  28. Butler GW, Peterson PJ (1963) Availability of selenium in forage to ruminants. NZ Soc Anim Prod 23:13–27Google Scholar
  29. Carter DL, Robbins CW, Brown MJ (1970) Selenium concentrations in forage on some high Northwestern ranges. J Range Manage 23:234–238CrossRefGoogle Scholar
  30. Channell R, Lomolino MV (2000) Dynamics biogeography and conservation of endangered species. Nature 403:84–86PubMedCrossRefGoogle Scholar
  31. Chao YK, Wong PTS, Silverberg BA, Luxon PL, Bengert GA (1976) Methylation of selenium in the aquatic environment. Science 192:1130–1131CrossRefGoogle Scholar
  32. Choudhury N, Gorman KS (2003) Subclinical prenatal iodine deficiency negatively affects infant development in northern China. J Nutr 133:3162–3165PubMedGoogle Scholar
  33. Clayton JL, Kennedy DA, Nagel T (1991) Soil response to acid deposition, Wind River Mountains, Wyoming: I. Soil properties. Soil Sci Soc Am J 55:1427–1439CrossRefGoogle Scholar
  34. Coggins VL (2006) Selenium supplementation, parasite treatment, and management of bighorn sheep at Lostine River, Oregon. Bienn Symp North Wild Sheep Goat Counc 15:98–106Google Scholar
  35. Combs GF Jr, Combs SB (1986) The role of selenium in nutrition. Academic, New YorkGoogle Scholar
  36. Combs CF Jr, Scott ML (1977) Nutritional interrelationships of vitamin E and selenium. Bioscience 27:467–473CrossRefGoogle Scholar
  37. Cox MK (2006) Effects of mineral supplements on California bighorn sheep in northern Nevada. Bienn Symp North Wild Sheep and Goat Council 15:107–120Google Scholar
  38. Custer TW, Cox E, Gray B (2004) Trace elements on moose (Alces alces) found dead in Northwestern Minnesota, USA. Sci Total Environ 330:81–87PubMedCrossRefGoogle Scholar
  39. Dalir-Naghadeh B, Rezaei SA (2008) Assessmant of serum thyroid hormone concentrations in lambs with selenium deficiency myopathy. Am J Vet Res 69:659–663PubMedCrossRefGoogle Scholar
  40. Dean R, Hnilicka P, Kreeger T, Delcurto T (2004) An investigation into the selenium requirement for Rocky Mountain bighorn sheep. Bienn Symp North Wild Sheep and Goat Council 13:95–99Google Scholar
  41. de Souza MP, Chu D, Zhao M, Zayed AM, Ruzin SE, Schichnes D, Terry N (1999) Rhizosphere bacteria enhance selenium accumulation and volatilization by Indian mustard. Plant Physiol 119:565–573PubMedCrossRefGoogle Scholar
  42. Dhillon KS, Dhillon SK (2000) Selenium accumulation by sequentially grown wheat and rice as influenced by gypsum application in a seleniferous soil. Plant Soil 227:243–248CrossRefGoogle Scholar
  43. Dierenfeld ES, Jessup DA (1990) Variation in serum alpha-tocopherol, retinol, cholesterol, and selenium of free-ranging mule deer (Odocoileus hemionus). J Zoo Wildl Med 21:425–432Google Scholar
  44. Doran JW, Alexander M (1976) Microbial formation of volatile selenium compounds in soil. Soil Sci Soc Am J 40:687–690CrossRefGoogle Scholar
  45. Downey CM, Horton CR, Carlson BA, Parsons TE, Hatfield DL, Hallgrimsson B, Jirik FR (2009) Osteo-chondroprogenitor-specific deletion of selenocysteine tRNA gene, Trsp, leads to chondronecrosis and abnormal skeletal development: a putative model for Kashin–Beck disease. PLoS Genet 5(8):e1000616. doi: 10.137 1/journal.pgen.1000616 PubMedCrossRefGoogle Scholar
  46. Duce RA, Hoffman GL, Zoller WH (1975) Atmospheric trace metals at remote northern and southern hemisphere sites: pollution or natural? Science 187:59–61PubMedCrossRefGoogle Scholar
  47. Dunbar MR, Velarde R, Gregg MA, Bray M (1999) Health evaluation of a pronghorn antelope population in Oregon. J Wildl Dis 35:496–510PubMedGoogle Scholar
  48. Duntas LH (2010) Selenium and the thyroid: a close-knit connection. J Clin Endocrinol Metab 95:5180–5188PubMedCrossRefGoogle Scholar
  49. Ebert R, Seefried L, Jakob F (2008) Trace elements and bone health. Osteologie 17:60–66Google Scholar
  50. Ebert R, Jakob F (2007) Selenium deficiency as a putative risk factor for osteoporosis. Int Congr Series 1297:158–164CrossRefGoogle Scholar
  51. Elrashidi MA, Adriano DC, Workman SM, Lindsay WL (1987) Chemical equilibria of selenium in soils: a theoretical development. Soil Sci 144:141–152CrossRefGoogle Scholar
  52. Emakova V, Jovanovic L (2010) Selenium deficiency as a consequence of human activity and its correction. J Geochem Expl 107:193–199CrossRefGoogle Scholar
  53. Fernandez-Martýnez A, Charlet L (2009) Selenium environmental cycling and bioavailability: a structural chemists point of view. Rev Environ Sci Biotechnol 8:81–110CrossRefGoogle Scholar
  54. Fielder PC (1986) Implications of selenium levels in Washington mountain goats, mule deer, and Rocky Mountain elk. Northwest Sci 60:15–20Google Scholar
  55. Fleming RE, Alexander M (1972) Dimethyselenide and demethyltelluride formation by a strain of Penicillium. Appl Microbiol 24:424–429PubMedGoogle Scholar
  56. Flueck WT (1990) Possible impact of emmissions on trace mineral availability to free-ranging ruminants: selenium as an example. Zeits Jagdwiss 36:179–185Google Scholar
  57. Flueck WT (1991) Whole blood selenium levels and glutathione peroxidase activity in erythrocytes of black-tailed deer. J Wildl Manage 55:26–31CrossRefGoogle Scholar
  58. Flueck WT (1994) Effect of trace elements on population dynamics: selenium deficiency in free-ranging black-tailed deer. Ecology 75:807–812CrossRefGoogle Scholar
  59. Flueck WT (2009) Biotic translocation of phosphorous: the role of deer in protected areas. Sustainability 1:104–119CrossRefGoogle Scholar
  60. Flueck WT, Smith-Flueck JM (1990) Selenium deficiency in deer. The effect of a declining selenium cycle? Trans Congr Int Union Game Biol 19:292–301Google Scholar
  61. Flueck WT, Smith-Flueck JM (2008) Age-independent osteopathology in skeletons of a South American cervid, the Patagonian huemul (Hippocamelus bisulcus). J Wildl Dis 44:636–648PubMedGoogle Scholar
  62. Flueck WT, Smith-Flueck JM (2011a) Recent advances in the nutritional ecology of the Patagonian huemul: implications for recovery. Anim Prod Sci 51:311–326Google Scholar
  63. Flueck WT, Smith-Flueck JM (2011b) Intraspecific phenotypic variation in deer: the role of genetic and epigenetic processes. Anim Prod Sci 51:365–374Google Scholar
  64. Flueck WT, Norman BB, Smith-Flueck JM, Jacobsen NK (1989) The potential of increasing deer production by broad scale selenium supplementation in Northern California. Int Symp Industr Selenium Tellurium 4:713–717Google Scholar
  65. Frost DV (1987) Why the level of selenium in the food chain appears to be decreasing. In: Combs GF, Spallholz JE, Levander OA, Oldfield JE (eds) Selenium in biology and medicine. Part A. AVI Publishing, New YorkGoogle Scholar
  66. Frøslie A, Norheim G, Rambaek JB, Steinnes E (1984) Levels of trace elements in liver from Norwegian moose, reindeer and red deer in relation to atmospheric deposition. Acta Vet Scand 25:333–345PubMedGoogle Scholar
  67. Galgan V, Frank A (1995) Survey of bioavailable selenium in Sweden with the moose (Alces alces) as monitoring animal. Sci Total Environ 172:37–45PubMedCrossRefGoogle Scholar
  68. Geering HR, Cary EE, Jones LHP, Allaway WH (1968) Solubility and redox criteria for the possible forms of selenium in soils. Soil Sci Soc Amer Proc 32:35–40CrossRefGoogle Scholar
  69. Gil S, Hevia S, Dallorso M, Resnizky S (2004) Selenium in bovine plasma, soil and forage measured by neutron activation analysis. Arg Bras Med Vet Zootec 56:264–266CrossRefGoogle Scholar
  70. Gissel-Nielsen G, Hamdy AA (1977) Leaching of added selenium in soils low in native selenium. Z Pflanzenern Bodenk 140:193–198CrossRefGoogle Scholar
  71. Gissel-Nielsen G, Bisbjerg B (1970) The uptake of applied selenium by agricultural plants. 2. The utilization of various selenium compounds. Plant Soil 32:382–396CrossRefGoogle Scholar
  72. Goldberg S, Glaubig RA (1988) Anion sorption on a calcareous, montmorillonitic soil—selenium. Soil Sci Soc Am J 52:954–958CrossRefGoogle Scholar
  73. Grace ND, Wilson PR (2002) Trace element metabolism, dietarty requirements diagnosis and prevention of deficiencies in deer. NZ Vet J 50:252–259CrossRefGoogle Scholar
  74. Griner LA (1978) Muscular dystrophy in ungulates at the San Diego Zoo and San Diego Wild Animal Park. Verhand XX Internationalen Symposiums uber die Erkrankungen der ZootiereGoogle Scholar
  75. Gustafsson JP, Jacks G, Stegmann B, Ross HB (1993) Soil acidity and adsorbed anions in Swedish forest soils—long-term changes. Agr Ecosyst Environ 47:103–115CrossRefGoogle Scholar
  76. Hadlow WJ (1955) Degenerative myopathy in a white-tailed deer, Odocoileus virginianus. Cornell Vet 45:538–547PubMedGoogle Scholar
  77. Harthill M (2011) Review: micronutrient selenium deficiency influences evolution of some viral infectious diseases. Biol Trace Elem Res 30:77–83Google Scholar
  78. Hatfield DL, Gladyshev VN (2002) How selenium has altered our understanding of the genetic code. Mol Cell Biol 22:3565–3576PubMedCrossRefGoogle Scholar
  79. Haygarth PM, Harrison AF, Jones KC (1993a) Geographical and seasonal variation in deposition of seleneium to vegetation. Environ Sci Technol 27:2878–2884CrossRefGoogle Scholar
  80. Haygarth PM, Cooke AI, Jones KC, Harrison AF, Johnston A (1993b) Long-term change in the biogeochemical cycling of atmospheric selenium: deposition to plants and soil. J Geophys Res 98:16769–16776CrossRefGoogle Scholar
  81. Haygarth PM, Jones KC, Harrison AF (1991) Selenium cycling through agricultural grasslands in the UK: budgeting the role of the atmosphere. Sci Total Environ 103:89–111CrossRefGoogle Scholar
  82. Hebert D, Cowan IM (1971a) Natural salt licks as a part of the ecology of the mountain goat. Can J Zool 49:605–610PubMedCrossRefGoogle Scholar
  83. Hebert D, Cowan IM (1971b) White muscle disease in the mountain goat. J Wildl Manage 35:752–756CrossRefGoogle Scholar
  84. Hein RG, Talcott PA, Smith JL, Meyers WL (1994) Blood selenium values of selected wildlife populations in Washington. Northwest Sci 68:185–188Google Scholar
  85. Helyar KR, Cregan PD, Godyn DL (1990) Soil acidity in New South Wales—current pH values and estimates of acidification rates. Aust J Soil Res 28:523–537CrossRefGoogle Scholar
  86. Hidiroglou M, Proulx J, Jolette J (1987) Effect of intraruminally administered, selenium soluble-glass boluses on selenium status in cows and their calves. J Anim Sci 65:815–820PubMedGoogle Scholar
  87. Hnilicka PA, Mionczynski J, Mincher BJ, States J, Hinschberger M, Oberlie S, Thompson C, Yates B, Siemer DD (2004) Bighorn sheep lamb survival, trace minerals, rainfall, and air pollution: are there any connections? Bienn Symp North Wild Sheep Goat Council 13:69–94Google Scholar
  88. Hopper JL, Parker DR (1999) Plant availability of selenite and selenate as influenced by the competing ions phosphate and sulfate. Plant Soil 210:199–207CrossRefGoogle Scholar
  89. Humann-Ziehank E, Ganter M, Hennig-Pauka I, Binder A (2008) Trace mineral status and liver and blood parameters in sheep without mineral supply compared to local roe deer (Capreolus capreolus) populations. Small Rum Res 75:185–191CrossRefGoogle Scholar
  90. Iyengar GV, Gopal-Ayengar AR (1988) Human health and trace-elements including effects on high-altitude populations. Ambio 17:31–35Google Scholar
  91. Jackson TA (1997) Long-range atmospheric transport of mercury to ecosystems, and the importance of anthropogenic emissions—critical review and evaluation of the published evidence. Environ Rev 5:99–120CrossRefGoogle Scholar
  92. James BR, Riha SJ (1986) pH buffering in forest soil organic horizons: relevance to acid precipitation. J Environ Qual 15:229–234CrossRefGoogle Scholar
  93. Jarzyńska G, Falandysz J (2011) Selenium and 17 other largely essential and toxic metals in muscle and organ meast of red deer (Cervus elaphus)—consequences to human health. Environ Int 37:882–888PubMedCrossRefGoogle Scholar
  94. Jobbagy EG, Jackson RB (2004) The uplift of soil nutrients by plants: biogeochemical consequences across scales. Ecology 85:2380–2389CrossRefGoogle Scholar
  95. Joblin KN, Pritchard MW (1983) Urinary effect on variations in the selenium and sulphur contents of ryegrass from pasture. J Plant and Soil 70:69–76CrossRefGoogle Scholar
  96. Johnson WH, Norman BB, Dunbar JR (1979) Selenium improves weight gain of beef calves. Calif Agr 33:14–16Google Scholar
  97. Jones MB, Rendig VV, Norman BB, Center DM, Dally MR, Williams WA (1987) Selenium enhances lamb gains on sulfur-fertilized pastures. Calif Agri 41:14–16Google Scholar
  98. Kabata-Pendias A, Pendias K (1984) Trace elements in soils and plants. CRC, Boca RatonGoogle Scholar
  99. Kalkus JW (1920) A study of goitre and associated conditions in domestic animals. Wash Agr Expt Sta Bull 156:1–48Google Scholar
  100. Karlson U, Frankenberger WT Jr (1989) Accelerated rates of selenium volitalization from California soils. Soil Sci Soc Am J 53:749–753CrossRefGoogle Scholar
  101. Kasaikina MV, Kravtsova MA, Lee BC et al (2011) Dietary selenium affects host selenoproteome expression by influencing the gut microbiota. FASEB J 25:2492–2499PubMedCrossRefGoogle Scholar
  102. Kaushal N, Hegde S, Lumadue J, Paulson RF, Prabhu KS (2011) The regulation of erythropoiesis by selenium in mice. Antioxid Redox Signal 14:1403–1412PubMedCrossRefGoogle Scholar
  103. Kipp AP, Banning A, van Schothorst EM et al (2012) Marginal selenium deficiency down-regulates inflammation-related genes in splenic leukocytes of the mouse. J Nutr Biochem. doi: 10.1016/j.jnutbio.2011.06.011
  104. Knox DP, Reid HW, Peters JG (1987) An outbreak of selenium responsive unthriftiness in farmed red deer (Cervus elaphus). Vet Rec 120:91–92PubMedCrossRefGoogle Scholar
  105. Köhrle J (2005) Selenium and the control of thyroid hormone metabolism. Thyroid 15:841–853PubMedCrossRefGoogle Scholar
  106. Köhrle J, Jakob F, Contempre B, Dumont JE (2005) Selenium, the thyroid, and the endocrine system. Endocr Rev 26:944–984PubMedCrossRefGoogle Scholar
  107. Köhrle J (2000) The selenoenzyme family of deiodinase isozymes controls local thyroid hormone availability. Rev Endocr Metabol Disord 1:49–58CrossRefGoogle Scholar
  108. Kotyzová D, Cerná P, Lešetický L, Eybl V (2010) Trace elements status in selenium-deficient rats—interaction with cadmium. Biol Trace Elem Res 136:287–293PubMedCrossRefGoogle Scholar
  109. Kozat S (2007) Serum T3 and T4 concentrations in lambs with nutritional myodegeneration. J Vet Intern Med 21:1135–1137PubMedGoogle Scholar
  110. Kryukov GV, Novoselov SV, Lobanov AV, Zehtab O, Guigo R, Castellano S, Gladyshev VN (2003) Characterization of mammalian selenoproteomes. Science 300:1439–1443PubMedCrossRefGoogle Scholar
  111. Kubota J, Cary EE (1982) Cobalt, molybdenum, and selenium. In: Methods of soil analysis, part 2: chemical and microbiological properties—Agronomy Monograph no. 9 (2nd edn). Soil Science Society of America, MadisonGoogle Scholar
  112. Kumar N, Garg AK, Dass RS, Chaturvedi VK, Mudgal V, Varshney VP (2009) Selenium supplementation influences growth performance, antioxidant status and immune response in lambs. Anim Feed Sci Technol 153:77–87CrossRefGoogle Scholar
  113. Lag J, Steinnes E (1978) Regional distribution of selenium and arsenic in humus layers of Norwegian forest soils. Geoderma 20:3–14CrossRefGoogle Scholar
  114. Lakin HW (1972) Selenium accumulation in soils and its absorption by plants and animals. Geol Soc Am Bull 83:181–190CrossRefGoogle Scholar
  115. Laliberte AS, Ripple WJ (2004) Range contractions of North American carnivores and ungulates. Bioscience 54:123–138CrossRefGoogle Scholar
  116. Lazarus M, Orct T, Blanuŝa M, Vicković I, Ŝoŝtarić B (2008) Toxic and essential metal concentrations in four tissues of red deer (Cervus elaphus) from Baranja, Croatia. Food Addit Contam 25:270–283CrossRefGoogle Scholar
  117. Levander OA, Ager AL, Beck MA (1995) Vitamin E and selenium: contrasting and interacting nutritional determinants of host resistance to parasites and viral infections. Proc Nutr Soc 54:475–487PubMedCrossRefGoogle Scholar
  118. Mackintosh CG, Gill J, Turner K (1989) Selenium supplementation of young red deer (Cervus elaphus). NZ Vet J 37:143–145CrossRefGoogle Scholar
  119. Mackowiak CL, Amacher MC (2008) Soil sulfur amendments suppress selenium uptake by alfalfa and western wheatgrass. J Environ Qual 37:772–779PubMedCrossRefGoogle Scholar
  120. Macneil JD, Patterson JR, Salisbury CD, Tessaro SV (1990) An investigation on the trace element status of bison in Wood Buffalo National Park and of ranch-raised bison in Saskatchewan, Canada. Int J Environ Anal Chem 41:99–104CrossRefGoogle Scholar
  121. Maiers DT, Wichlacz PL, Thompson DL, Bruhn DF (1988) Selenate reduction by bacteria from a selenium-rich environment. Appl Environ Microbiol 54:2591–2593PubMedGoogle Scholar
  122. Masscheleyn PH, Delaune RD, Patrick WH Jr (1990) Transformation of selenium as affected by sediment oxidation-reduction potential and pH. Environ Sci Technol 24:91–96CrossRefGoogle Scholar
  123. Matamoros R, Conteras PA, Wittwer F, Mayagora MI (2003) Hypothyroidism in ruminants. Arch Med Vet 35:1–11CrossRefGoogle Scholar
  124. Matzke P (1986) Ueber einige gesundheitliche Probleme in Damwildgehegen zur Fleischerzeugung. Tieraerztl Prax 14:471–475Google Scholar
  125. McCann JC, Ames BN (2011) Adaptive dysfunction of selenoproteins from the perspective of the triage theory: why modest selenium deficiency may increase risk of diseases of aging. FASEB J 25:1793–1814PubMedCrossRefGoogle Scholar
  126. McDowell LR, Forrester DJ, Linda SB, Wright SD, Wilkinson NS (1995) Selenium status of white-tailed deer in southern Florida. J Wildl Dis 31:205–211PubMedGoogle Scholar
  127. McDowell LR (1989) Vitamins in animal nutrition-comparative aspects to human nutrition. In: McDowell LR (ed) Vitamin E. Academic Press, London, pp. 93–131Google Scholar
  128. Milewski A (2002) Elephant diet at the edge of the Fynbos Biome, South Africa. Pachyderm 32:29–38Google Scholar
  129. Mills A, Milewski A (2007) Geophagy and nutrient supplementation in the Ngorongoro Conservation Area, Tanzania, with particular reference to selenium, cobalt and molybdenum. J Zool 271:110–118CrossRefGoogle Scholar
  130. Mincher BJ, Mionczynski J, Hnilicka PA, Ball RD, Houghton TX (2008) Some aspects of geophagia in Wyoming bighorn sheep (Ovis canadensis). Eur J Wildl Res 54:192–198CrossRefGoogle Scholar
  131. Mincher BJ, Mionczynski J, Hnilicka PA (2007) Soil redox chemistry limitation of selenium concentration in Carex species sedges. Soil Sci 179:733–739CrossRefGoogle Scholar
  132. Moreno-Reyes R, Egrise D, Neve J, Pasteels J-L, Schoutens A (2001) Selenium deficiency-induced growth retardation is associated with an impaired bone metabolism and osteopenia. J Bone Min Res 16:1556–1563CrossRefGoogle Scholar
  133. Moreno-Reyes R, Suetens C, Mathieu F, Begaux F, Zhu D, Rivera MT, Boelaert M, Neve J, Perlmutter N, Vanderpas L (1998) Kashin–Beck osteoarthropathy in rural Tibet in relation to selenium and iodine status. N Engl J Med 339:1112–1120PubMedCrossRefGoogle Scholar
  134. Morton J, Carolan VA, Gardiner PHE (2002) Removal of exogenously bound elements from human hair by various washing procedures and determination by inductively coupled plasma mass spectrometry. Anal Chem Acta 455:23–34CrossRefGoogle Scholar
  135. Mosher BW, Duce RA (1987) A global atmospheric selenium budget. J Geophys Res 92:13289–13298CrossRefGoogle Scholar
  136. Mosher BW, Duce RA, Prospero JM, Savoie DL (1987) Atmospheric selenium: geographical distribution and ocean to atmosphere flux in the Pacific. J Geophys Res 92:13277–13287CrossRefGoogle Scholar
  137. Mueller M, Banning A, Brigelius-Flohe R, Kipp A (2010) Nrf2 target genes are induced under marginal selenium-deficiency. Genes Nutr 5:297–307CrossRefGoogle Scholar
  138. Muth OH (1955) White muscle disease (myopathy) in lambs and calves. I. Occurrence and nature of the disease under Oregon conditions. J Am Vet Med Assoc 142:355–361Google Scholar
  139. Myneni SCB, Tokunaga TK, Brown GE Jr (1997) Abiotic selenium redox transformations in the presence of Fe(II, III) oxides. Science 278:1106–1109CrossRefGoogle Scholar
  140. National Research Council (1983) Selenium in nutrition. National Academy Press, Washington, DCGoogle Scholar
  141. National Zoological Park (1972) 1971 annual report, National Zoological Park. Smithsonian Institution Press, Washington, DCGoogle Scholar
  142. National Zoological Park (1974) 18-months report, July 1, 1971–December 31, 1972, National Zoological Park. Smithsonian Institution Press, Washington, DCGoogle Scholar
  143. Neville TL, Caton JS, Hammer CJ, Reed JJ, Luther JS, Taylor JB, Redmer DA, Reynolds LP, Vonnahme KA (2010) Ovine offspring growth and diet digestibility are influenced by maternal selenium supplementation and nutritional intake during pregnancy despite a common postnatal diet. J Anim Sci 88:3645–3656PubMedCrossRefGoogle Scholar
  144. Niklasson M, Granstrom A (2000) Numbers and sizes of fires: long-term spatially explicit fire history in a Swedish boreal landscape. Ecology 81:1484–1499CrossRefGoogle Scholar
  145. Oh SH, Sunde RA, Pope AL, Hoekstra WC (1976) Gltathione peroxidase response to selenium intake in lambs fed aTorula yeast-based, artificial milk. J Anim Sci 42:977–983PubMedGoogle Scholar
  146. O'Hara TM, Carroll G, Barboza P, Mueller K, Blake J, Wosher V, Willetto C (2001) Mineral and heavy metal status as related to a mortality event and poor recruitment in a moose population in Alaska. J Wildl Dis 37:509–522PubMedGoogle Scholar
  147. Oliver MN, Ross-McGauran G, Jessup DA, Norman BB, Franti CE (1990) Selenium concentrations in blood of free-ranging mule deer in California. Trans West Sec Wildl Soc 26:80–86Google Scholar
  148. Olson OE, Cary EE, Allaway WH (1976) Absorption of trimethylselenonium by plants. Agron J 68:805–809CrossRefGoogle Scholar
  149. Oremland RS, Blum JS, Culbertson CW, Visscher PT, Miller LG, Dowdle P, Strohmaier FE (1994) Isolation, growth, and metabolism of an obligately anaerobic, selenate-respiring bacterium, strain SES-3. Appl Environ Microbiol 60:3011–3019PubMedGoogle Scholar
  150. Oremland RS, Hollibaugh JT, Maest AS, Presser TS, Miller LG, Culbertson CW (1989) Selenate reduction to elemental selenium by anaerobic bacteria in sediments and culture: biogeochemical significance of a novel, sulfate-independent respiration. Appl Environ Microbiol 55:3011–3019Google Scholar
  151. Packard FM (1946) An ecological study of the bighorn sheep in Rocky Mountain National Park, Colorado. J Mammal 27:3–28PubMedCrossRefGoogle Scholar
  152. Pavlata L, Prasek J, Filipek J, Pechova A (2004) Influence of parenteral administration of selenium and vitamin E during pregnancy on selected metabolic parameters and colostrum quality in dairy cows at parturition. Vet Med Czech 49:149–155Google Scholar
  153. Perrault J, Wyneken J, Thompson LJ, Johnson C, Miller DL (2011) Why are hatching and emergence success low? Mercury and selenium concentrations in nesting leatherback sea turtles (Dermochelys coriacea) and their young in Florida. Marine Poll Bull 62:1671–1682CrossRefGoogle Scholar
  154. Peterson PJ, Spedding DJ (1963) The excretion by sheep of 75-selenium incorporated into red clover (Trifolium pretense): the chemical nature of the excreted selenium and its uptake by three plant species. NZ J Ag Res 6:13–23CrossRefGoogle Scholar
  155. Pfeifer H, Conrad M, Roethlein D, Kyriakopoulos A, Brielmeier M, Bornkamm GW, Behne D (2001) Identification of a specific sperm nuclei selenoenzyme necessary for protamine thiol crosslinking during sperm maturation. FASEB J 15:1236–1238PubMedCrossRefGoogle Scholar
  156. Pickering IJ, Brown GE Jr, Tokunaga TK (1995) Quantitative speciation of selenium in soils using X-ray absorption spectroscopy. Environ Sci Technol 29:2456–2458PubMedCrossRefGoogle Scholar
  157. Pilarczyk B, Tomza-Marciniak A, Pilarczyk R, Hendzel D, Blaszczyk B, Bąkowska M (2011a) Tissue distribution of selenium and effect of season and age on selenium content in roe deer from northwestern Poland. Biol Trace Elem Res 140:299–307PubMedCrossRefGoogle Scholar
  158. Pilarczyk B, Drozd R, Pilarczyk R, Tomza-Marciniak A, Jankowiak D, Hendzel D, Kuba J, Kowalska J (2011b) Glutathione peroxidase (GSHPx) activity in the liver of red deer in relation to hepatic selenium concentrations, sex, body weight and season of year. Biol Trace Elem Res 144:560–569PubMedCrossRefGoogle Scholar
  159. Pilarczyk B, Hendzel D, Pilarczyk R, Tomza-Marciniak A, Blaszczyk B, Dąbrowska-Wieczorek M, Bąkowska M, Adamowicz E, Bujak T (2010) Liver and kidney concentrations of selenium in wild boars (Sus scofra) from north-western Poland. Eur J Wildl Res 56:797–802CrossRefGoogle Scholar
  160. Pilarczyk B, Balicka-Ramisz A, Ramisz A, Adamowicz E, Pilarczyk R, Tomza-Marciniak A, Bąkowska M (2009) Selenium concentration in liver and kidney of free living animals (roe and red deer) from West Pomerania (Poland). Eur J Wildl Res 55:279–283CrossRefGoogle Scholar
  161. Pine DS, Mansfield TM (1983) Physical condition and reproductive status of the Santa Lucia deer herd, Monterey County, California. Cal Fish and Game Admin Rep 83-3:1–5Google Scholar
  162. Pollock B (2005) Trace elements status of white-tailed red deer (Odocoileus virginianus) and moose (Alces alces) in Nova Scotia. Wildlife Damage Management, Internet Center for Canadian Cooperative Wildlife Health Centre: Newsletters & Publications, University of Nebraska–Lincoln, 33 ppGoogle Scholar
  163. Porter WL, Scott RS, Manktelow BW (1970) The occurrence of pariodontal disease in sheep in relation to superphosphate topdressing, stocking rate and other related factors. NZ Vet J 18:21–27CrossRefGoogle Scholar
  164. Potter BJ, Mano MT, Belling GB, McIntosh GH, Hua C, Cragg BG, Marshall J, Wellby ML, Hetzel BS (1982) Retarded fetal brain development resulting from severe dietary iodine deficiency in sheep. Neuropathol Appl Neurobiol 8:303–313PubMedCrossRefGoogle Scholar
  165. Presser TS, Ohlendorf HM (1987) Biogeochemical cycling of selenium in the San Joaquin Valley, California, USA. Environ Manage 11:805–821CrossRefGoogle Scholar
  166. Puls R (1994) Mineral levels in animal health: diagnostic data, 2nd edn. Sherpa International, Clearbrook, p 356Google Scholar
  167. Raisbeck MF, O’Toole DO, Schamber RA, Belden EL, Robinson LJ (1996) Toxicological evaluation of a high-selenium hay diet in captive pronghorn antelope (Antilocapra americana). J Wildl Dis 32:9–16PubMedGoogle Scholar
  168. Raymond LJ, Ralston NVC (2004) Mercury: selenium interactions and health implications. Seychelles Med Dent J 7:72–77Google Scholar
  169. Reamer DC, Zoller WH (1980) Selenium biomethylation products from soil and sewage sludge. Science 208:500–502PubMedCrossRefGoogle Scholar
  170. Rederstorff M, Krol A, Lescure A (2006) Understanding the importance of selenium and selenoproteins in muscle function. Cell Mol Life Sci 63:52–59PubMedCrossRefGoogle Scholar
  171. Reeves MA, Hoffmann PR (2009) The human selenoproteome: recent insights into functions and regulation. Cell Mol Life Sci 66:2457–2478PubMedCrossRefGoogle Scholar
  172. Refait P, Simon L, Génin J-M (2000) Reduction of SeO42− anions and anoxic formation of iron(II)–iron(III) hydroxyl selenate green rust. Environ Sci Technol 34:819–825CrossRefGoogle Scholar
  173. Ren Y, Wang Q, Shi L, Yue W, Zhang C, Lei F (2011) Effects of maternal and dietary selenium (Se-enriched yeast) on the expression of p34cdc2 and CyclinB1 of germ cells of their offspring in goats. Anim Reprod Sci 123:187–191PubMedCrossRefGoogle Scholar
  174. Ren FL, Guo X, Zhang RJ, Wang SJ, Zuo H, Zhang ZT, Geng D, Yu Y, Su M (2007) Effects of selenium and iodine deficiency on bone, cartilage growth plate and chondrocyte differentiation in two generations of rats. Osteoarthritis Cartilage 15:1171–1177PubMedCrossRefGoogle Scholar
  175. Ren JZ, Zhou ZY, Pan B, Chen W (1987) Selenium distribution in four grassland classes of China. In: Comb GF, Spallholz JE, Levander OA, Oldfield JE (eds) Selenium in biology and medicine. AVI Publishing, New York, pp. 769–774Google Scholar
  176. Risenhoover KL, Bailey JA, Wakelyn LA (1988) Assessing the Rocky Mountain bighorn sheep management problem. Wildl Soc Bull 16:346–352Google Scholar
  177. Robbins CT, Parish SM, Robbins BL (1985) Selenium and glutathione peroxidase activity in mountain goats. Can J Zool 63:1544–1547CrossRefGoogle Scholar
  178. Robbins CT (1983) Wildlife feeding and nutrition. Academic, New YorkGoogle Scholar
  179. Rosen LE, Walsh DP, Wolfe LL, Bedwell CL, Miller MW (2009) Effects of selenium supplementation and sample storage time on blood indices of selenium status in bighorn sheep. J Wildl Dis 45:795–801PubMedGoogle Scholar
  180. Rosenfeld I, Beath OA (1964) Selenium, geobotany, biochemistry, toxicity and nutrition. Academic, New YorkGoogle Scholar
  181. Rucker RB, Fascetti AJ, Keen CL (2008) Trace minerals. In: Kaneko JJ, Harvey JW (eds) Clinical biochemistry of domestic animals, 6th edn. Academic, Burlington, pp 663–694CrossRefGoogle Scholar
  182. Sarathchandra SU, Watkinson JH (1981) Oxidation of elemental selenium to selenite by Bacillus megaterium. Science 211:600–601PubMedCrossRefGoogle Scholar
  183. Sakuma Y, Matsuoka K, Honda C, Matsumoto K, Endo K (2008) Dynamics of redox related elements (Fe, Co, Zn, and Se) and oxidative stress caused by Se-deficiency in rats. J Radioanal Nucl Chem 278:591–594CrossRefGoogle Scholar
  184. Samson J, Jorgeson JT, Wishart WD (1989) Glutathione peroxidase activity and selenium levels in Rocky Mountain bighorn sheep and mountain goats. Can J Zool 67:2493–2496CrossRefGoogle Scholar
  185. Sargison ND, West MD, Clark RG (1998) The effect of iodine deficiency on ewe fertility and perinatal lamb mortality. NZ Vet J 46:72–75CrossRefGoogle Scholar
  186. Schlumberger HG (1955) Spontaneous goiter and cancer of the thyroid in animals. Ohio J Sci 55:23–43Google Scholar
  187. Schubert JR, Muth OH, Oldfield JE, Remmert LF (1961) Experimental results with selenium in white muscle disease of lambs and calves. Fed Proc 20:689–694PubMedGoogle Scholar
  188. Schwarz K, Foltz CM (1957) Selenium as an integral part of factor 3 against dietary liver degeneration. J Am Chem Soc 79:3292–3293CrossRefGoogle Scholar
  189. Serdaru M, Vlădescu L, Ţolea I (2004) Fluorimetric study of the selenium course in the dam–calf relationship. Biol Trace Elem Res 99:113–121PubMedCrossRefGoogle Scholar
  190. Shchedrina VA, Zhang Y, Labunskyy VM, Hatfield DL, Gladyshev VN (2010) Structure–function relations, physiological roles, and evolution of mammalian ER-resident selenoproteins. Antiox Redox Signal 12:839–849CrossRefGoogle Scholar
  191. Shrift A (1964) A selenium cycle in nature? Nature 201:1304–1305PubMedCrossRefGoogle Scholar
  192. Sivertsen T (2004) Connections between regional geochemistry and trace element problems in sheep in Norway. In: Steinnes E (ed) Geomedical aspects of organic farming. Norwegian Academy of Science and Letters, Oslo, pp 65–70Google Scholar
  193. Sleeman JM, Manning EJ, Rohm JH, Sims JP, Sanchez S, Gerhold RW, Keel MK (2009) Johne’s disease in a free-ranging white-tailed deer from Virginia and subsequent surveillance for Mycobacterium avium subspecies paratuberculosis. J Wildl Dis 45:201–206PubMedGoogle Scholar
  194. Sleeman JM, Magura K, Howell J, Rohm J, Murphy LA (2010) Hepatic mineral values of white-tailed deer (Odocoileus virginianus) from Virginia. J Wildl Dis 46:525–531PubMedGoogle Scholar
  195. Slemr F, Langer E (1992) Increase in global atmospheric concentrations of mercury inferred from measurements of the Atlantic Ocean. Nature 355:434–437CrossRefGoogle Scholar
  196. Sørmo EG, Ciesielski TM, Øverjordet IB, Lierhagen S, Eggen GS, Berg T, Jenssen BM (2011) Selenium moderates mercury toxicity in free-ranging freshwater fish. Environ Sci Technol 45:6561–6566PubMedCrossRefGoogle Scholar
  197. Sors TG, Ellis DR, Salt DE (2005) Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosyn Res 86:373–389PubMedCrossRefGoogle Scholar
  198. Stadtman TC (1990) Selenium biochemistry. Annu Rev Biochem 59:111–127PubMedCrossRefGoogle Scholar
  199. Starkley EE, deCalesta DS, Witmer GW (1982) The management of Roosevelt elk habitat and harvest. Trans N Am Wildl Nat Res Conf 47:353–362Google Scholar
  200. Steinhöfel O, Wachs S, Wacker K (2004) Untersuchungen zur Durchführbarkeit und den Auswirkungen von Landnutzungsänderungen auf dem Grünland in den Elbauen. Schrift Sächsischen Landesanst Landwirtsch 9:1–97Google Scholar
  201. Steinnes E, Rambaek JP, Hanssen JE (1992) Large scale multi-element survey of atmospheric deposition using naturally growing moss as a biomonitor. Chemosphere 25:735–752CrossRefGoogle Scholar
  202. Stephenson TR, Crouse JA, Hundertmark KJ, Keech MA (2001) Vitamin E, selenium, and reproductive losses in Alaskan Moose. Alces 37:201–206Google Scholar
  203. Stoszek MJ, Willmes H, Jordan NL, Kessler WB (1980) Natural trace mineral deficiency in native pronghorn antelope populations. Proceedings of the 9th Biennial Pronghorn Antelope Workshop, Rio Rico, AZ, USA, pp 71–76Google Scholar
  204. Suttle NF (2010) Selenium. In: Suttle NF (ed) Mineral nutrition of livestock, 4th edn. CABI Publishing, Oxon, pp 377–425Google Scholar
  205. Swaine DJ (1978) Selenium: from magma to man. In: Hemphill DD (ed) Trace substances in environmental health—XII. University of Missouri Press, Missouri, pp 129–134Google Scholar
  206. Tachi Y, Shibutani T, Sato H, Yui M (1998) Sorption and diffusion behavior of selenium in tuff. J Contam Hydro 35:77–88CrossRefGoogle Scholar
  207. Tate WP, Mansell JB, Mannering SA, Irvine JH, Major LL, Wilson DN(1999) UGA: a dual signal for ‘stop’ and for recoding in protein synthesis. Biochemistry 64:1342–1353PubMedGoogle Scholar
  208. Taylor EW, Nadimpalli RG, Ramanathan CS (1997) Genomic structures of viral agents in relation to the biosynthesis of selenoproteins. Biol Trace Elem Res 56:63–91PubMedCrossRefGoogle Scholar
  209. Thompson ME, Roach C, Braddock W (1956) New occurrences of native selenium. Am Mineral 41:156–157Google Scholar
  210. Tiedemann AR, Klemmedson JO, Bull EL (2000) Solution of forest health problems with prescribed fire: are forest productivity and wildlife at risk? For Ecol Manage 127:1–18CrossRefGoogle Scholar
  211. Turanov AA, Xu XM, Carlson BA, Yoo MH, Gladyshev VN, Hatfield DL (2011) Biosynthesis of selenocysteine, the 21st aminoic acid in the genetic code, and a novel pathway for cysteine biosynthesis. Adv Nutr 2:122–128PubMedGoogle Scholar
  212. Ullrey DE, Youatt WG, Whetter PA (1981) Muscle selenium concentrations in Michigan deer. J Wildl Manage 45:534–536CrossRefGoogle Scholar
  213. Ulrich JM, Shrift A (1968) Selenium absorption by excised Astragalus roots. Plant Physiol 43:14–20PubMedCrossRefGoogle Scholar
  214. Usuki F, Yamashita A, Fujimura M (2011) Post-transcriptional defects of antioxidant selenoenzymes cause oxidative stress under methylmercury exposure. J Biol Chem 286:6641–6649PubMedCrossRefGoogle Scholar
  215. Van Dorst SH, Peterson PJ (1984) Selenium speciation in the soil solution and its relevance to plant uptake. J Sci Food Agric 35:601–605CrossRefGoogle Scholar
  216. Van Metre DC, Callan RJ (2001) Selenium and vitamin E. In: Van Metre DC (ed) Update on small ruminant medicine. Veterinary Clinics of North America: Food Animal Practice vol 17(2). W.B. Saunders, PhiladelphiaGoogle Scholar
  217. Van Reenen G (1980) Trace elements and deer management. Deer Farmer 4:25–31Google Scholar
  218. Vikøren T, Kristoffersen AB, Lierhagen S, Handeland K (2011) A comparitive study of hepatic trace element levels in wild moose, roe deer, and reindeer from Norway. J Wildl Dis 41:569–579Google Scholar
  219. Vikøren T, Bernhoft A, Waaler T, Handelan K (2005) Liver concentrations of copper, cobalt and selenium in wild Norwegian red deer (Cervus elaphus). J Wildl Dis 41:569–579PubMedGoogle Scholar
  220. Von Kerckerinck zur Borg J (1987) Deer farming in North America. Phanter Press, RhinebeckGoogle Scholar
  221. Voudouri AE, Chadio SE, Menegatos JG, Zervas GP, Nicol F, Arthur JR (2003) Selenoenzyme activities in selenium- and iodine-deficient sheep. Biol Trace Elem Res 94:213–224PubMedCrossRefGoogle Scholar
  222. Wang Z, Gao Y (2001) Biogeochemical cycling of selenium in Chinese environments. Appl Geochem 16:1345–1351CrossRefGoogle Scholar
  223. Wang C, Wang H, Luo J, Hu Y, Wei L, Duan M, He H (2009) Selenium deficiency impairs host innate immune response and induces susceptibility to Listeria monocytogenes infection. BMC Immunol 10:55. doi: 1186/1471-2172-10-55 PubMedCrossRefGoogle Scholar
  224. Wang HF, Takematsu N, Ambe S (2000) Effects of soil acidity on the uptake of trace elements in soybean and tomato plants. Appl Radiat Isot 52:803–811PubMedCrossRefGoogle Scholar
  225. Webb JS, Atkinson WJ (1965) Regional geochemical reconnaissance applied to some agricultural Problems in Co. Limerick, Eire. Nature 208:1056–1059CrossRefGoogle Scholar
  226. Weiss HV, Koide M, Goldberg ED (1971) Selenium and sulfur in a Greenland ice sheet: relation to fossil fuel combustion. Science 172:261–263PubMedCrossRefGoogle Scholar
  227. Whanger PD (1992) Selenium in the treatment of heavy-metal poisoning and chemical carcinogenesis. J Trace Elem Electrol Health Dis 6:209–221Google Scholar
  228. White PJ, Bowen HC, Marshal B, Broadley MR (2007) Extraordinarily high leaf selenium to sulfur ratios define Se-accumulator plants. Ann Bot 100:111–118PubMedCrossRefGoogle Scholar
  229. White PJ, Bowen HC, Parmaguru P, Fritz M, Spracklen WP, Spiby RE, Meachem MC, Mead A, Harriman M, Trueman LJ, Smith BM, Thomas B, Broadley MR (2004) Interactions between selenium and sulfur nutrition in Arabidopsis thaliana. J Expt Bot 55:1927–1937CrossRefGoogle Scholar
  230. Wichtel JJ, Freeman DA, Varela-Alvarez H, Williamson NB, Craigie AL (1996) Effect of selenium and iodine supplementation on growth rate and on thyroid and somatotropic function in dairy calves at pasture. J Dairy Sci 79:1866–1872CrossRefGoogle Scholar
  231. Williams MW, Losleben MV, Hamann HB (2002) Alpine areas in the Colorado Front Range as monitors of climate change and ecosystem response. Geogr Rev 92:180–191CrossRefGoogle Scholar
  232. Wilson PR, Bell M, Walker IH, Quinn A, Woolderink M (2002) Iodine and calf survival. NZVA Deer Branch Conf Proc 19:105–112Google Scholar
  233. Wilson PR, Grace ND (2001) A review of tissue reference values used to assess the trace element status of farmed red deer (Cervus elaphus). NZ Vet J 49:126–132CrossRefGoogle Scholar
  234. Yang J, Hu Y, Bu R (2006) Microscale spatial variability of redox potential in surface soil. Soil Sci 171:747–753CrossRefGoogle Scholar
  235. Yoshioka K, Domi M, Wang S, Li Y, Xia Z, Oyamada T, Yoshikawa H, Yoshikawa T (2000) Hepatic ceroid-lipofuscinosis in enzootic cardiomyopathy of Sika deer (Cervus nippon Temminck). J Comp Pathol 123:67–71PubMedCrossRefGoogle Scholar
  236. Ytrehus B, Skagemo H, Stuve G, Sivertsen T, Handeland K, Vikoren T (1999) Osteoporosis, bone mineralization, and status of selected trace elements in two populations of moose calves in Norway. J Wildl Dis 35:204–211PubMedGoogle Scholar
  237. Zagrodzki P, Nicol F, McCoy MA, Smyth JA, Kennedy DG, Arthur JR (1998) Iodine deficiency in cattle: compensatory changes in thyroidal selenoenzymes. Res Vet Sci 64:209–211PubMedCrossRefGoogle Scholar
  238. Zayed A, Lytle CM, Terry N (1998) Accumulation and volatilization of different chemical species of selenium by plants. Planta 206:284–292CrossRefGoogle Scholar
  239. Zhang Y, Frankenberger WT Jr (2000) Formation of dimethylselenonium compounds in soil. Environ Sci Technol 34:776–783CrossRefGoogle Scholar
  240. Zieve R, Peterson PJ (1984) Volatilization of selenium from plants and soils. Sci Total Environ 32:197–202CrossRefGoogle Scholar
  241. Zimmerman TJ, Jenks JA, Leslie DM Jr, Neiger RD (2008) Hepatic minerals of white-tailed and mule deer in the southern Black Hills, South Dakota. J Wildl Dis 44:341–350PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • W. T. Flueck
    • 1
    • 2
    • 3
    • 4
    Email author
  • J. M. Smith-Flueck
    • 4
  • J. Mionczynski
    • 5
  • B. J. Mincher
    • 6
  1. 1.National Council of Scientific and Technological Research (CONICET)Buenos AiresArgentina
  2. 2.Fundación BarilocheBarilocheArgentina
  3. 3.Swiss Tropical and Public Health InstituteUniversity BaselBaselSwitzerland
  4. 4.Institute of Natural Resources Analysis—PatagoniaUniversidad Atlantida ArgentinaBarilocheArgentina
  5. 5.Wildlife ConsultantAtlantic CityUSA
  6. 6.Aqueous Separations and Radiochemistry DepartmentIdaho National LaboratoryIdaho FallsUSA

Personalised recommendations