Occurrence of virulence genes in multidrug-resistant Escherichia coli isolates from Iberian wolves (Canis lupus signatus) in Portugal

Abstract

While much evidence supports the view that the total consumption of antimicrobials is the critical factor in selecting resistance, the possibility of resistant isolates and/or genes encoding resistance being transferred among different living communities has raised serious concerns. In the present study, Escherichia coli isolates recovered from faecal samples (n = 34) of Iberian wolves (Canis lupus signatus) were characterized for their antimicrobial drug susceptibility. Nearly two thirds of the isolates carried resistance to one or more antimicrobial drugs (in a panel of 19 antibiotics), and resistance to tetracycline, ampicillin and streptomycin was most widespread. By screening a set of 20 multidrug-resistant E. coli for virulence genes, we found strains positive for cdt, chuA, cvaC, eaeA, paa and bfpA, which was the most common virulence trait. Phylogenetic analyses have shown that the majority of these E. coli strains fall into phylogenetic groups A and B1. In this study, the diversity of extended-spectrum β-lactamase-producing strains was expressed by both polymorphism of the pulsed-field gel electrophoresis patterns and the presence of various resistance and virulence genes profiles. Finding the specific implications of these multi-resistant bacteria (hosting several virulence factors) in wolf conservation is a challenging topic to be addressed in further investigations.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Aarestrup FM, Wegener HC, Collignon P (2008) Resistance in bacteria of the food chain: epidemiology and control strategies. Expert Rev Anti-Infect Ther 6(5):733–750

    Article  PubMed  Google Scholar 

  2. Álvares F (2004) Status and conservation of Iberian wolf in Portugal. Wolf Print 20:4–6

    Google Scholar 

  3. Aminov RI (2010) A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol 1:134

    PubMed Central  Article  PubMed  Google Scholar 

  4. Baldy-Chudzik K, Mackiewicz P, Stosik M (2008) Phylogenetic background, virulence gene profiles, and genomic diversity in commensal Escherichia coli isolated from ten mammal species living in one zoo. Vet Microbiol 131(1–2):173–184

    CAS  Article  PubMed  Google Scholar 

  5. Bessa-Gomes C, Petrucci-Fonseca F (2003) Using artificial neural networks to assess wolf distribution patterns in Portugal. Anim Conserv 6:221–229

    Article  Google Scholar 

  6. Bonnedahl J, Drobni M, Gauthier-Clerc M, Hernandez J, Granholm S, Kayser Y, Kahlmeter G, Waldenström J, Johansson A, Olsen B (2009) Dissemination of Escherichia coli with CTX-M type ESBL between humans and yellow legged gulls in the south of France. PLoS One 4(6):e5958

    PubMed Central  Article  PubMed  Google Scholar 

  7. Branger C, Zamfir O, Geoffroy S, Laurans G, Arlet G, Vu Thien H, Gouriou S, Picard B, Denamur E (2005) Genetic background of Escherichia coli and extended-spectrum β-lactamase type. Emerg Infect Dis 11(1):54–61

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  8. Chapman TA, Wu X-Y, Barchia I, Bettelheim KA, Driesen S, Trott D, Wilson M, Chin JJ-C (2006) Comparison of virulence gene profiles of Escherichia coli strains isolated from healthy and diarrheic swine. Appl Environ Microbiol 72(7):4782–4795

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  9. Clermont O, Bonacorsi S, Bingen E (2000) Rapid and simple determination of Escherichia coli phylogenetic group. Appl Environ Microbiol 66(10):4555–4558

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  10. CLSI (2007) Performance standards for antimicrobial susceptibility testing. Seventeenth informational supplement M100-S17. Clinical and Laboratory Standards Institute, Wayne

    Google Scholar 

  11. Costa D, Poeta P, Saenz Y, Vinue L, Rojo-Bezares B, Jouini A, Zarazaga M, Rodrigues J, Torres C (2007) Detection of Escherichia coli harbouring extended-spectrum β-lactamases of the CTX-M, TEM and SHV classes in faecal samples of wild animals in Portugal. J Antimicrob Chemother 59(6):1311–1312

    Google Scholar 

  12. da Costa PM, Vaz-Pires V, Bernardo F (2008) Antimicrobial resistance in Escherichia coli isolated in wastewater and sludge from poultry slaughterhouses wastewater plants. J Environ Health 70(7):40–45

    PubMed  Google Scholar 

  13. Dancer SJ (2004) How antibiotics can make us sick: the less obvious adverse effects of antimicrobial chemotherapy. Lancet Infect Dis 4(10):611–619

    CAS  Article  PubMed  Google Scholar 

  14. Eggermann J, Ferrão da Costa G, Guerra AM, Kirchner WH, Petrucci-Fonseca F (2010) Presence of Iberian wolf (Canis lupus signatus) in relation to land cover, livestock and human influence in Portugal. Mamm Biol 76(2):217–221

    Google Scholar 

  15. Enne VI, Delsol AA, Davis GR, Hayward SL, Roe JM, Bennett PM (2005) Assessment of the fitness impacts on Escherichia coli of acquisition of antibiotic resistance genes encoded by different types of genetic element. J Antimicrob Chemother 56(3):544–551

    CAS  Article  PubMed  Google Scholar 

  16. Girlich D, Poirel L, Carattoli A, Kempf I, Lartigue MF, Bertini A, Nordmann P (2007) Extended-spectrum β-lactamase CTX-M-1 in Escherichia coli isolates from healthy poultry in France. Appl Environ Microbiol 73(14):4681–4685

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  17. Grilo C, Roque S, Rio-Maior H, Petrucci-Fonseca F (2004) The isolated wolf population South of Douro River: status and action priorities for its recovery. Wolf Print 20:13–15

    Google Scholar 

  18. Hamelin K, Bruant G, El-Shaarawi A, Hill S, Edge TA, Fairbrother J, Harel J, Maynard C, Masson L, Brouseau R (2007) Occurrence of virulence and antimicrobial resistance genes in Escherichia coli isolates from different aquatic ecosystems within the St. Clair River and Detroit River areas. Appl Environ Microbiol 73(2):477–484

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  19. Hammerum AM, Heuer OE (2009) Human health hazards from antimicrobial-resistant Escherichia coli of animal origin. Clin Infect Dis 48(7):916–921

    CAS  Article  PubMed  Google Scholar 

  20. Machado E, Coque TM, Canton R, Sousa JC, Peixe L (2008) Antibiotic resistance integrons and extended-spectrum {beta}-lactamases among Enterobacteriaceae isolates recovered from chickens and swine in Portugal. J Antimicrob Chemother 62(2):296–302

    CAS  Article  PubMed  Google Scholar 

  21. Martínez JL (2008) Antibiotics and antibiotic resistance genes in natural environments. Science 321(5887):365–367

    Article  PubMed  Google Scholar 

  22. Meriggi A, Lovari S (1996) A review of wolf predation in southern Europe: does the wolf prefer wild prey to livestock? J Appl Ecol 33(6):1561–1571

    Article  Google Scholar 

  23. Middleton JH, Ambrose A (2005) Enumeration and antibiotic resistance patterns of fecal indicator organisms isolated from migratory Canada geese (Branta canadensis). J Wildl Dis 41(2):334–341

    CAS  Article  PubMed  Google Scholar 

  24. Pimenta V, Barroso I, Álvares F, Correia J, Ferrão da Costa G, Moreira L, Nascimento J, Petrucci-Fonseca F, Roque S, Santos E (2005) Censo Nacional de Lobo 2002/2003. Technical report. Instituto da Conservação da Natureza/Grupo Lobo, Lisbon, p 158

    Google Scholar 

  25. Pitout JD (2010) Infections with extended-spectrum beta-lactamase-producing Enterobacteriaceae: changing epidemiology and drug treatment choices. Drugs 70(3):313–333

    CAS  Article  PubMed  Google Scholar 

  26. Poeta P, Radhouani H, Pinto L, Martinho A, Rego V, Rodrigues R, Gonçalves A, Rodrigues J, Estepa V, Torres C, Igrejas G (2009) Wild boars as reservoirs of extended-spectrum beta-lactamase (ESBL) producing Escherichia coli of different phylogenetic groups. J Basic Microbiol 49(6):584–588

    CAS  Article  PubMed  Google Scholar 

  27. Rohland N, Hofreiter M (2007) Comparison and optimization of ancient DNA extraction. Biotechniques 42(3):343–352

    CAS  Article  PubMed  Google Scholar 

  28. Roque S, Álvares F, Petrucci-Fonseca F (2001) Utilización espacio-temporal y hábitos alimenticios de un grupo reproductor de lobos en el Noroeste de Portugal. Galemys 13:179–198

    Google Scholar 

  29. Russo TA, Johnson JR (2000) Proposal for a new inclusive designation for extraintestinal pathogenic isolates of Escherichia coli: ExPEC. J Infect Dis 181(5):1753–1754

    CAS  Article  PubMed  Google Scholar 

  30. Schierack P, Römer A, Jores J, Kaspar H, Guenther S, Filter M, Eichberg J, Wieler LH (2009) Isolation and characterization of intestinal Escherichia coli clones from wild boars in Germany. Appl Environ Microbiol 75(3):695–702

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  31. Simões R, Poirel L, Martins da Costa P, Nordmann P (2010) Seagulls and beaches as a reservoir for emerging extended spectrum beta-lactamase producers in Escherichia coli. Emerg Infect Dis 16(1):110–112

    PubMed Central  Article  PubMed  Google Scholar 

  32. Siqueira AK, Ribeiro MG, DdaS L, Tiba MR, Moura C, Lopes MD, Prestes NC, Salerno T, Silva AV (2009) Virulence factors in Escherichia coli strains isolated from urinary tract infection and pyometra cases and from feces of healthy dogs. Res Vet Sci 86(2):206–210

    CAS  Article  PubMed  Google Scholar 

  33. Sjolund M, Bonnedahl J, Hernandez J, Bengtsson S, Cederbrant G, Pinhassi J, Kahlmeter G, Olsen B (2008) Dissemination of multidrug-resistant bacteria into the arctic. Emerg Infect Dis 14(1):70–71

    PubMed Central  Article  PubMed  Google Scholar 

  34. van Elsas JD, Semenov AV, Costa R, Trevors JT (2011) Survival of Escherichia coli in the environment: fundamental and public health aspects. ISME J 5(2):173–183

    PubMed Central  Article  PubMed  Google Scholar 

  35. Vilà C, Amorim IR, Leonard JA, Posada D, Castroviejo J, Petrucci-Fonseca F, Crandall KA, Ellegren H, Wayne RK (1999) Mitochondrial DNA phylogeography and population history of the grey wolf Canis lupus. Mol Ecol 8(12):2089–2103

    Article  PubMed  Google Scholar 

  36. Vos J (2000) Food habits and livestock depredation of two Iberian wolf packs (Canis lupus signatus) in the north of Portugal. J Zool 251:457–462

    Article  Google Scholar 

  37. Woodford N, Fagan EJ, Ellington MJ (2006) Multiplex PCR for rapid detection of genes encoding CTX-M extended-spectrum (beta)-lactamases. J Antimicrob Chemother 57(1):154–155

    CAS  Article  PubMed  Google Scholar 

  38. Yong D, Park R, Yum JH, Lee K, Choi EC, Chong Y (2002) Further modification of the Hodge test to screen AmpC beta-lactamase (CMY-1)-producing strains of Escherichia coli and Klebsiella pneumoniae. J Microbiol Meth 51(3):407–410

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Faecal samples from wolves were collected and genetically analysed during research projects funded by VentoMinho-Energias Renováveis, S.A. and ACHLI—Associação de conservação do habitat do lobo-ibérico. We thank M. Nakamura, D. Cadete, S. Pinto, A. Pedro and N. Santos for helping in sample collection and R. Godinho and D. Castro for the genetic identification of faecal samples. Wolves were captured under legal permits issued by ICNB/Ministry of Environment.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paulo Martins da Costa.

Additional information

Communicated by C. Gortázar

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Simões, R., Ferreira, C., Gonçalves, J. et al. Occurrence of virulence genes in multidrug-resistant Escherichia coli isolates from Iberian wolves (Canis lupus signatus) in Portugal. Eur J Wildl Res 58, 677–684 (2012). https://doi.org/10.1007/s10344-012-0616-4

Download citation

Keywords

  • Canis lupus signatus
  • E. coli
  • Antimicrobial resistance
  • Phylogenetic groups
  • Virulence factors