European Journal of Wildlife Research

, Volume 57, Issue 1, pp 1–13 | Cite as

Bridging the gaps between non-invasive genetic sampling and population parameter estimation

  • Francesca MaruccoEmail author
  • Luigi Boitani
  • Daniel H. Pletscher
  • Michael K. Schwartz


Reliable estimates of population parameters are necessary for effective management and conservation actions. The use of genetic data for capture–recapture (CR) analyses has become an important tool to estimate population parameters for elusive species. Strong emphasis has been placed on the genetic analysis of non-invasive samples, or on the CR analysis; however, little attention has been paid to the simultaneous overview of the full non-invasive genetic CR analysis, and the important insights gained by understanding the interactions between the different parts of the technique. Here, we review the three main steps of the approach: designing the appropriate sampling scheme, conducting the genetic lab analysis, and applying the CR analysis to the genetic results; and present a synthesis of this topic with the aim of discussing the primary limitations and sources of error. We discuss the importance of the integration between these steps, the unique situations which occur with non-invasive studies, the role of ecologists and geneticists throughout the process, the problem of error propagation, and the sources of biases which can be present in the final estimates. We highlight the importance of team collaboration and offer a series of recommendations to wildlife ecologists who are not familiar with this topic yet but may want to use this tool to monitor populations through time.


Capture-mark-recapture Genetic Molecular tagging Non-invasive Population size 



We thank K. Griffin, P. Ciucci, and J. Boulanger for helpful comments on the first draft of this paper. F. Marucco was supported by the Regione Piemonte, Progetto Lupo Piemonte, Parco Naturale Alpi Marittime. M. Schwartz was supported by a PECASE award during the writing of this manuscript.


  1. Adams J, Kelly B, Waits L (2003) Using faecal DNA sampling and GIS to monitor hybridization between red wolves (Canis rufus) and coyotes (Canis latrans). Mol Ecol 12:2175–2186CrossRefPubMedGoogle Scholar
  2. Ayres KL, Overall ADJ (2004) api-calc 1.0: a computer program for calculating the average probability of identity allowing for substructure, inbreeding and the presence of close relatives. Mol Ecol Notes 4:315–318CrossRefGoogle Scholar
  3. Begon M (1983) Abuses of mathematical techniques in ecology: applications of Jolly's capture-recapture method. Oikos 40:155–158CrossRefGoogle Scholar
  4. Bonin A, Bellemain E, Bronken Eidesen P, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetics studies. Mol Ecol 13:3261–3273CrossRefPubMedGoogle Scholar
  5. Boulanger J, McLellan BN (2001) Closure violation in DNA-based mark-recapture estimation of grizzly bear populations. Can J Zool 79:642–651CrossRefGoogle Scholar
  6. Boulanger J, McLellan BN, Woods JG, Proctor M, Strobeck C (2004) Sampling design and bias in DNA-based capture-mark-recapture population and density estimates of grizzly bears. J Wildl Manage 68:457–469CrossRefGoogle Scholar
  7. Boulanger J, Proctor M, Himmer S, Stenhouse G, Paetkau D, Cranston J (2006) An empirical test of DNA mark-recapture sampling strategies for grizzly bears. Ursus 17:149–158CrossRefGoogle Scholar
  8. Broquet T, Petit E (2004) Quantifying genotyping errors in noninvasive population genetics. Mol Ecol 13:3601–3608CrossRefPubMedGoogle Scholar
  9. Broquet T, Menard N, Petit E (2007) Noninvasive population genetics: a review of sample source, diet, fragment length and microsatellite motif effects on amplification success and genotyping error rates. Conserv Genet 8:249–260CrossRefGoogle Scholar
  10. Budowle B, Eisenberg AJ, VanDaal A (2009) Validity of Low Copy Number Typing and Applications to Forensic Science. Croat Med J 50:207–217CrossRefPubMedGoogle Scholar
  11. Creel S, Spong G, Sands J, Rotella J, Zeigle J, Joe L, Murphy KM, Smith DLJ (2003) Population size estimation in Yellowstone wolves with error-prone noninvasive microsatellite genotypes. Mol Ecol 12:2003–2009CrossRefPubMedGoogle Scholar
  12. Cubaynes S, Pradel R, Choquet R, Duchamp C, Gaillard J, Lebreton J, Marboutin E, Miquel C, Reboulet A, Poillot C, Taberlet P, Gimenez O (2010) Importance of accounting for detection heterogeneity when estimating abundance: the case of French Wolves. Conserv Biol 24:621–626CrossRefPubMedGoogle Scholar
  13. Dematteo K, Rinas M, Sede M, Davenport B, Arguelles C, Lovett K, Parker P (2009) Detection dogs: an effective technique for bush dog surveys. J Wildl Manage 73:1436–1440CrossRefGoogle Scholar
  14. DeYoung RW, Brennan LA (2005) Molecular genetics in wildlife science, conservation, and management. J Wildl Manage 69:1360–1361CrossRefGoogle Scholar
  15. Ebert C, Huckschlag D, Schulz HK, Hohmann U (2009) Can hair traps sample wild boar (Sus scrofa) randomly for the purpose of non-invasive population estimation? Eur J Wildl Res 56:583–590CrossRefGoogle Scholar
  16. Eggert LS, Eggert JA, Woodruff DS (2003) Estimating population sizes for elusive animals: the forest elephants of Kakum National Park, Ghana. Mol Ecol 12:1389–1402CrossRefPubMedGoogle Scholar
  17. Flagstad O, Hedmark E, Landa A, Broseth H, Persson J, Andersen R, Segerstrom P, Ellegren H (2004) Colonization history and noninvasive monitoring of a reestablished wolverine population. Conserv Biol 18:676–688CrossRefGoogle Scholar
  18. Frantz AC, Roper TJ (2006) Simulations to assess the performance of different rarefaction methods in estimating population size using small datasets. Conserv Genet 7:315–318CrossRefGoogle Scholar
  19. Gazey WJ, Staley MJ (1986) Population estimation from mark-recapture experiments using a sequential Bayes algorithm. Ecology 67:941–951CrossRefGoogle Scholar
  20. Gleeson DM, Byrom AE, Howitt RLJ (2010) Non-invasive methods for genotyping of stoats (Mustela erminea) in New Zealand: potential for field applications. NZ J Ecol 34:000–000Google Scholar
  21. Guschanski K, Vigilant L, McNeilage A, Gray M, Kagoda E, Robbins M (2009) Counting elusive animals: comparing field and genetic census of the entire mountain gorilla population of Bwindi Impenetrable National Park, Uganda. Biol Conserv 142:290–300CrossRefGoogle Scholar
  22. Jacob GR, Debrunner F, Gugerli B, Schmid BK (2010) Field surveys of capercaillie (Tetrao urogallus) in the Swiss Alps underestimated local abundance of the species as revealed by genetic analyses of non-invasive samples. Conserv Genet 11:33–44CrossRefGoogle Scholar
  23. Kalinowski ST, Wagner AP, Taper M (2006) ML-RELATE: a computer program for maximum likelihood estimation of relatedness and relationship. Mol Ecol Notes 6:576–579CrossRefGoogle Scholar
  24. Kendall KC, Stetz JB, Boulanger J, Macleod AC, Paetkau D, White GC (2009) Demography and genetic structure of a recovering grizzly bear population. J Wildl Manage 73:3–17CrossRefGoogle Scholar
  25. Knapp S, Craig B, Waits L (2009) Incorporating genotyping error into non-invasive DNABased Mark–Recapture Population Estimates. J Wildl Manage 73(4):598–604CrossRefGoogle Scholar
  26. Kohn MH, York EC, Kamradt DA, Haught G, Sauvajot RM, Wayne R (1999) Estimating population size by genotyping faeces. Proc R Soc Lond ser B 266:657–663CrossRefGoogle Scholar
  27. Lebreton J-D, Pradel R (2002) Multistate recapture models: modelling incomplete individual histories. J Appl Stat 29:353–369CrossRefGoogle Scholar
  28. Lebreton J-D, Burnham KP, Clobert J, Anderson DR (1992) Modeling survival and testing biological hypoyhesis using marked animals: a unified approach with case studies. Ecol Monogr 62:67–118CrossRefGoogle Scholar
  29. Lebreton J-D, Pradel R, Clobert J (1993) The statistical analysis of survival in animal populations. Trends Ecol Evol 8:91–95CrossRefPubMedGoogle Scholar
  30. Lucchini V, Fabbri E, Marucco F, Ricci S, Boitani L, Randi E (2002) Noninvasive molecular tracking of colonizing wolves (Canis lupus) packs in the Western Italian Alps. Mol Ecol 11:857–868CrossRefPubMedGoogle Scholar
  31. Luikart G, Ryman N, Tallmon DA, Schwartz MK, Allendorf FW (2010) Estimation of census and effective population sizes: the increasing usefulness of DNA-based approaches. Conserv Genet 11:355–373CrossRefGoogle Scholar
  32. Lukacs PM (2005) Statistical aspects of using genetic markers for individual identification in capture-recapture studies. Ph.D. thesis, Colorado State UniversityGoogle Scholar
  33. Lukacs PM, Burnham KP (2005) Review of capture-recapture methods applicable to noninvasive genetic sampling. Mol Ecol 14:3909–3919CrossRefPubMedGoogle Scholar
  34. MacKay P, Smith DA, Long RA, Parker M (2008) Scat detection dogs. In: Long RA (ed) Noninvasive survey methods for carnivores. Island Press, Washington, pp 183–222Google Scholar
  35. MacKenzie DI (2006) Modeling the probability of resource use: the effect of, and dealing with, detecting a species imperfectly. J Wildl Manage 70:367–374CrossRefGoogle Scholar
  36. Marucco F (2009) Spatial population dynamics of a recolonizing wolf population in the Western Alps. Ph.D. dissertation, University of MontanaGoogle Scholar
  37. Matejusová I, Doig F, Middlemas SJ, Mackay S, Douglas A, Armstrong JD, Cunningham CO, Snow M (2008) Using quantitative real-time PCR to detect salmonid prey in scats of grey Halichoerus grypus and harbour Phoca vitulina seals in Scotland—an experimental and field study. J Appl Ecol 45:632–640CrossRefGoogle Scholar
  38. McKelvey K, Schwartz MK (2004) Genetic errors associated with population estimation using non-invasive molecular tagging: problems and new solutions. J Wildl Manage 68:439–448CrossRefGoogle Scholar
  39. McKelvey K, Schwartz MK (2005) DROPOUT: a program to identify problem loci and samples for noninvasive genetic samples in a captutre-mark-recapture framework. Mol Ecol Notes 5:716–18CrossRefGoogle Scholar
  40. McKelvey K, Von Kienast J, Aubry KB, Koehler GM, Maletzke BT, Squires JR, Lindquist EL, Loch S, Schwartz MK (2006) DNA analysis and hair and scat collected along snow tracks to document the presence of Canada Lynx. Wildl Soc Bull 34:451–455CrossRefGoogle Scholar
  41. Miller CR, Joyce P, Waits LP (2002) Assessing allelic dropout and genotype reliability using maximum likelihood. Genetics 160:357–366PubMedGoogle Scholar
  42. Miller CR, Joyce P, Waits LP (2005) A new method for estimating the size of small populations from genetic mark-recapture data. Ecology 14:1991–2005Google Scholar
  43. Mills LS, Citta JJ, Lair KP, Schwartz MK, Tallmon DA (2000) Estimating animal abundance using noninvasive DNA sampling: promise and pitfalls. Ecol Appl 10:283–294CrossRefGoogle Scholar
  44. Miquel C, Bellemain E, Poillot C, Bessière J, Durand A, Taberlet P (2006) Quality indexes to assess the reliability of genotypes in studies using noninvasive sampling and multiple-tube approach. Mol Ecol Notes 6:985–988CrossRefGoogle Scholar
  45. Morin P, Chambers K, Boesch C, Vigilant L (2001) Quantitative polymerase chain reaction analysis of DNA from noninvasive samples for accurate microsatellite genotyping of wild chimpanzees (Pan troglodytes verus). Mol Ecol 10:1835–1844CrossRefPubMedGoogle Scholar
  46. Mowat G, Paetkau D (2002) Estimating marten (Martes americana) population size using hair capture and genetic tagging. Wildl Biol 8:201–209Google Scholar
  47. Mowat G, Strobeck C (2000) Estimating population size of grizzly bears using hair capture and genetic tagging. J Wildl Manage 64:183–193CrossRefGoogle Scholar
  48. Mulders R, Boulanger J, Paetkau D (2007) Estimation of population size for wolverines Gulo gulo at Daring Lake, Northwest territories, using DNA based mark-recapture methods. Wildl Biol 13:38–51Google Scholar
  49. Nichols JD (1992) Capture-recapture models: using marked animals to study population dynamics. Bioscience 42:94–102CrossRefGoogle Scholar
  50. O'Connell M, Wright JM (1997) Microsatellite DNA in fishes. Rev Fish Biol Fish 7:331–363CrossRefGoogle Scholar
  51. Paetkau D (2003) An empirical exploration of data quality in DNA-based population inventories. Mol Ecol 12:1375–1387CrossRefPubMedGoogle Scholar
  52. Penacino G, Sala A, Corach D (2003) Are DNA tests infallible? Int Congr Ser 1239:873–877CrossRefGoogle Scholar
  53. Perkel J (2008) SNO genotyping: six technologies that keyed a revolution. Nat Meth 5:447–453CrossRefGoogle Scholar
  54. Petit E, Valiere N (2006) Estimating population size with noninvasive capture-mark-recapture data. Conserv Biol 20:1062–1073CrossRefPubMedGoogle Scholar
  55. Pledger S, Efford M (1998) Correction of bias due to heterogeneous capture probability in capture-recapture studies of open populations. Biometrics 54:888–898CrossRefGoogle Scholar
  56. Pledger S, Pollock KH, Norris JL (2003) Open capture-recapture models with heterogeneity: I. Cormack–Jolly–Seber model. Biometrics 59:786–794CrossRefPubMedGoogle Scholar
  57. Pollock KH, Nichols JD, Brownie C, Hines JE (1990) Statistical inference for capture-recapture experiments. Wildl Monogr 107:1–97Google Scholar
  58. Pompanon F, Bonin A, Bellemain E, Taberlet P (2005) Genotyping errors: causes, consequences and solutions. Nat Rev 6:847–859CrossRefGoogle Scholar
  59. Powell LA, Conroy M, Hines JE, Krementz DG (2000) Simultaneous use of mark-recapture and radiotelemetry to estimate survival, movement, and capture rates. J Wildl Manage 64:302–313CrossRefGoogle Scholar
  60. Pradel R, Hines JE, Lebreton J-D, Nichols JD (1997a) Capture-recapture survival models taking account of transients. Biometrics 53:60–72CrossRefGoogle Scholar
  61. Pradel R, Hines JE, Lebreton JD, Nichols JD (1997b) Estimating survival rate and proportion of transients using capture-recapture data from open populations. Biometrics 53:88–99CrossRefGoogle Scholar
  62. Prugh LR, Ritland CE, Arthur SM, Krebs CJ (2005) Monitoring coyote population dynamic by genotyping faeces. Mol Ecol 14:1585–1596CrossRefPubMedGoogle Scholar
  63. Puechmaille SJ, Petit EJ (2007) Empirical evaluation of non-invasive capture-mark-recapture estimation of population size based on a single sampling session. J Appl Ecol 44:843–852CrossRefGoogle Scholar
  64. Roon DA, Waits LP, Kendall KC (2005) A simulation test of the effectiveness of several methods for error-checking non-invasive genetic data. Anim Conserv 8:203–215CrossRefGoogle Scholar
  65. Ruibal M, Peakall R, Claridge A, Firestone K (2009) Field-based evaluation of scat DNA methods to estimate population abundance of the spotted-tailed quoll (Dasyurus maculatus), a rare Australian marsupial. Wildl Res 36:721–736CrossRefGoogle Scholar
  66. Saks MJ, Koehler JJ (2005) The coming paradigm shift in forensic identification science. Science 309:892–895CrossRefPubMedGoogle Scholar
  67. Saks MJ, Risinger DM, Rosenthal R, Thompson W (2003) Context effects in forensic science: a review and application of the science of science to crime laboratory practice in the United States. Sci Justice 43:77–90CrossRefPubMedGoogle Scholar
  68. Schwartz MK, Monfort SL (2008) DNA and endocrine sampling. In: Long RA, MacKay P, Ray JC, Zielinski WJ (eds) Noninvasive survey methods for North American carnivores. Island Press, WashingtonGoogle Scholar
  69. Schwartz MK, Luikart G, Waples RS (2007) Genetic monitoring as a promising tool for conservation and management. Trends Ecol Evol 22:25–33CrossRefPubMedGoogle Scholar
  70. Schwarz CJ, Stobo WT (1999) Estimation and effects of tag-misread rates in capture-recapture studies. Can J Fish Aquat Sci 56:551–559CrossRefGoogle Scholar
  71. Settlage KE, Van Manen FT, Clark JD, King TL (2008) Challenges of DNA-based mark-recapture studies of American Black Bears. J Wildl Manage 72:1035–1042Google Scholar
  72. Smith DA, Balls K, Cypher B, Maldonado JE (2005) Assessment of scat-detection dog surveys to determine kit fox distribution. Wildl Soc Bull 33:897–904CrossRefGoogle Scholar
  73. Smith DA, Ralls K, Hurt A, Adams B, Parker M, Maldonado JE (2006) Assessing reliability of microsatellite genotypes from kit fox faecal samples using genetic and GIS analysis. Mol Ecol 15:387–406CrossRefPubMedGoogle Scholar
  74. Solberg KH, Bellemain E, Drageset O-M, Taberlet P, Swenson JE (2006) An evaluation of field and non-invasive genetic methods to estimate brown bear (Ursus arctos) population size. Biol Conserv 128:158–168CrossRefGoogle Scholar
  75. Stevick PT, Palsboll PJ, Smith TD, Bravington MV, Hammond PS (2001) Errors in identification using natural markings: rates, sources, and effects on capture-recapture estimates of abundance. Can J Fish Aquat Sci 58:1861–1870CrossRefGoogle Scholar
  76. Taberlet P, Griffin S, Goossens B, Questiau S, Manceau V, Escaravage N, Waits LP, Bouvet J (1996) Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res 26:3189–3194CrossRefGoogle Scholar
  77. Valiere N, Berthier P, Mouchiroud D, Pontier D (2002) GEMINI: software for testing the effects of genotyping errors and multitube approach for individual identification. Mol Ecol Notes 2:83–86Google Scholar
  78. Valiere N, Bonenfant C, Toigo C, Luikart G, Gaillard J-M, Klein F (2007) Importance of a pilot study for non-invasive genetic sampling: genotyping errors and population size estimation in red deer. Conserv Genet 8:69–78CrossRefGoogle Scholar
  79. Wagner AP, Creel S, Frank LG, Kalinowski ST (2007) Patterns of relatedness and parentage in an asocial, polyandrous striped hyena population. Mol Ecol 16:4356–4369CrossRefPubMedGoogle Scholar
  80. Waits JL, Leberg PL (2000) Biases associated with population estimation using molecular tagging. Anim Conserv 3:191–199CrossRefGoogle Scholar
  81. Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10:249–256CrossRefPubMedGoogle Scholar
  82. Wasser SK, Davenport B, Ramage ER, Hunt KE, Parker M, Clarke C, Stenhouse G (2004) Scat detection dogs in wildlife research and management: application to grizzly and black bears in the Yellowhead Ecosystem, Alberta, Canada. Can J Zool 82:475–492CrossRefGoogle Scholar
  83. White GC, Anderson DR, Burnham KP, Otis DL (1982) Capture-recapture and removal methods for sampling closed populations. Los Alamos National Laboratory, LA 8787-NERP, Los AlamosGoogle Scholar
  84. Williams BK, Nichols JD, Conroy MJ (2002) Analysis and management of animal populations. Academic, San FranciscoGoogle Scholar
  85. Wilson GJ, Frantz AC, Pope LC, Roper TJ, Burke TA, Cheeseman CL, Delahay RJ (2003) Estimation of badger abundance using faecal DNA typing. J Appl Ecol 40:658–666CrossRefGoogle Scholar
  86. Wright JA, Barker RJ, Schofield MR, Frantz AC, Byrom AE, Gleeson DM (2009) Incorporating genotyping uncertainty into mark-recapture-type models for estimating abundance using DNA samples. Biometrics 65:833–840CrossRefPubMedGoogle Scholar
  87. Yoshizaki J (2007) Use of natural tags in closed population capture-recapture studies: modelling misidentification. Dissertation, North Carolina State UniversityGoogle Scholar
  88. Zhan X, Li M, Zhang Z, Goossens B, Chen Y, Wang H, Bruford MW, Wei F (2006) Molecular censusing doubles giant panda population estimate in a key nature reserve. Curr Biol 16:R451–R452CrossRefPubMedGoogle Scholar
  89. Zielinski WJ, Schlexer FV, Pilgrim KL, Schwartz MK (2006) Testing the efficacy of two methods for snaring hair from mesocarnivores. Wildl Soc Bull 34:1152–1161CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Francesca Marucco
    • 1
    Email author
  • Luigi Boitani
    • 2
  • Daniel H. Pletscher
    • 3
  • Michael K. Schwartz
    • 4
  1. 1.Progetto Lupo Piemonte, Centro Gestione e Conservazione Grandi CarnivoriValdieriItaly
  2. 2.Department of Human and Animal BiologyUniversity of Roma “La Sapienza”RomeItaly
  3. 3.Wildlife Biology Program, Department of Ecosystem and Conservation SciencesUniversity of MontanaMissoulaUSA
  4. 4.USDA Forest Service Rocky Mountain Research StationMissoulaUSA

Personalised recommendations