Advertisement

European Journal of Wildlife Research

, Volume 56, Issue 5, pp 757–764 | Cite as

Effects of azaperone and haloperidol on the stress response of drive-net captured Iberian ibexes (Capra pyrenaica)

  • Gregorio MentaberreEmail author
  • Jorge Ramón López-Olvera
  • Encarnación Casas-Díaz
  • Laura Fernández-Sirera
  • Ignasi Marco
  • Santiago Lavín
Original Paper

Abstract

The physical capture of wild ungulates is performed for different purposes when anesthesia in field conditions is not possible or advisable. The use of tranquilizers may contribute to improved welfare of captured animals. This study aimed to evaluate the effect of azaperone and haloperidol on the stress response of Iberian ibex (Capra pyrenaica) through the evaluation of physiological, hematological, and serum biochemical parameters. Thirty-five Iberian ibexes were drive-net captured and randomly injected with azaperone (0.52 ± 0.07 mg/kg intramuscularly (IM); n = 10), haloperidol (0.17 ± 0.04 mg/kg IM; n = 10), or saline (0.5 mL IM; n = 15) and physically restrained for 3 h. The variability of heart rate was lower in the azaperone-treated ibexes, suggesting a calming effect, and erythrocyte and biochemical parameters indicated vasodilation, splenic sequestration, hemodilution, improvement of renal perfusion, and a protective effect on muscle as a result of smooth muscle relaxation induced by azaperone. Haloperidol showed poorer results, maybe due to insufficient dosage. These results support the suitability of using azaperone in capture operations of Iberian ibex in order to reduce stress and prevent its adverse effects.

Keywords

Iberian ibex Haloperidol Azaperone Drive-net capture Acute stress 

Notes

Acknowledgments

We are grateful to the staff of the National Game Reserve of Tortosa i Beseit, especially to its former director, Mr. Jordi Romeva, and to the Cos d’Agents Rurals (Rangers brigade) of Catalonia for their invaluable collaboration in facilitating and capturing the animals. This research has been supported as research project CGL2004-00330/BOS of the Comisión Interministerial de Ciencia y Tecnología (CICYT). A native English-speaking instructor at the Universitat Autònoma de Barcelona provided editorial assistance. The experiments in this study comply with the current Spanish laws.

References

  1. Arnemo JM, Negard T, Soli NE (1993) Deer farming in Norway. A review of the currently available drugs that can be used for immobilization, pain relief and anaesthesia. Norsk-Veterinaertidsskrift 105:517–521Google Scholar
  2. Bakken M, Moe RO, Smith AJ, Selle GME (1999) Effects of environmental stressors on deep body temperature and activity levels in silver fox vixens (Vulpes vulpes). Appl Anim Behav Sci 64:141–151Google Scholar
  3. Booth NH (1988) Psychotropic agents. In: Booth NH, McDonald LE (eds) Veterinary pharmacology and therapeutics. Iowa State University Press, Ames, pp 321–345Google Scholar
  4. Caprinae Specialist Group (2007) Capra pyrenaica. In: IUCN Red List of Threatened Species. Available via IUCN. http://www.iucnredlist.org. Accessed 5 March 2009
  5. Casas-Díaz E (2007) Use of acepromazine for stress control in Spanish ibex (Capra pyrenaica) captured by drive-net. PhD Dissertation, Univertisat Autònoma de BarcelonaGoogle Scholar
  6. Casas-Díaz E, López-Olvera JR, Marco I, Mentaberre G, Lavín S (2008a) Hematologic and biochemical values for Spanish ibex (Capra pyrenaica) captured via drive-net and box-trap. J Wildl Dis 44(4):965–972Google Scholar
  7. Casas-Díaz E, Marco I, López-Olvera JR, Mentaberre G, Lavín S (2008b) Use of acepromazine for stress control in Spanish ibex (Capra pyrenaica) captured by drive-net. Vet J doi: 10.1016/j.tvjl.2008.11.003 Google Scholar
  8. Cross JP, Mackintosh CG, Griffin JFT (1988) Effect of physical restraint and xylazine sedation on hematological values in red deer (Cervus elaphus). Res Vet Sci 45:281–286Google Scholar
  9. DiBartola SP, Autrain de Morais H (2000) Hypokalemia and hyperkalemia. In: DiBartola SP (ed) Fluid therapy in small animal practice. W.B. Saunders Company, Philadelphia, pp 83–107Google Scholar
  10. Diverio S, Goddard PJ, Gordon IJ (1996) Use of long-acting neuroleptics to reduce the stress response to management practices in red deer. Appl Anim Behav Sci 49:83–88Google Scholar
  11. Ebedes H, Raath JP (1999) Use of tranquilizers in wild herbivores. In: Fowler ME, Miller RE (eds) Zoo and wild animal medicine. Current therapy 4. W.B. Saunders Company, Philadelphia, pp 575–585Google Scholar
  12. Fick L, Matthee A, Mitchell D, Fuller A (2006) The effect of boma-housing and long-acting tranquilizers on body temperature and food intake of blue wildebeest (Connochaetes taurinus). J Therm Biol 31:159–167Google Scholar
  13. Fick L, Mitchell D, Fuller A (2007) Long-acting neuroleptics used in wildlife management do not impair thermoregulation or physical activity in goats (Capra hircus). Comp Biochem Physiol A 147:445–452Google Scholar
  14. Finco DR (1997) Kidney function. In: Kaneko JJ, Harvey JW, Bruss ML (eds) Clinical biochemistry of domestic animals. Academic Press Inc, San Diego, pp 485–516Google Scholar
  15. Franzmann AW, Thorne ET (1970) Physiologic values in wild bighorn sheep (Ovis canadensis canadensis) at capture, after handling, and after captivity. J Am Vet Med Assoc 157:647–650Google Scholar
  16. Ganong WF (2002) Sistema nervioso autónomo. In: Ganong WF (ed) Fisiología Médica, 18th edn. El Manual Moderno SA, México DF, pp 245–252Google Scholar
  17. Gibert P (1991) Conséquences de la capture et des manipulations sur la physiologie des ongulés sauvages. Incidence pathologique Bilan et conaissances B Mens Off Nation Chasse 161:31–40Google Scholar
  18. Goldberger AL (1991) Is the normal heartbeat chaotic or homeostatic? News in Physiological Science 6:87–91Google Scholar
  19. Guyton AC, Hall JE (2000) Textbook of medical physiology, 10th edn. W.B. Saunders Company, Philadelphia, pp 253–262Google Scholar
  20. Hattingh J, Pitts NI, Ganhao MF, Carlston A (1990) Physiological-response to manual restraint of wild Impala. J Exp Zool 253:47–50Google Scholar
  21. Hopster H, Blokhuis HJ (1994) Validation of a heart-rate monitor for measuring stress-response in dairy-cows. Can J Anim Sci 74:465–474Google Scholar
  22. Horalek G, Jones AR (1993) The heart rate of farmed red deer during and after transportation. Appl Anim Behav Sci 38:76Google Scholar
  23. Hyvärinen H, Helle T, Nieminen M, Vayrynen P, Vayrynen R (1976) Some effects of handling reindeer during gatherings on composition of their blood. Anim Prod 22:105–114Google Scholar
  24. Ingram JR, Crockford JN, Matthews LR (1999) Ultradian, circadian and seasonal rhythms in cortisol secretion and adrenal responsiveness to ACTH and yarding in unrestrained red deer (Cervus elaphus) stags. J Endocrinol 162:289–300Google Scholar
  25. Jain NC (1993) Essentials of veterinary hematology. Lea and Febiger, PhiladelphiaGoogle Scholar
  26. Kaneko JJ (1997) Serum proteins and disproteinemias. In: Kaneko JJ, Harvey JW, Bruss ML (eds) Clinical biochemistry of domestic animals. Academic Press Inc, San Diego, pp 45–81Google Scholar
  27. Kenny D, DeNicola A, Amgalanbaatar S, Namshir Z, Wingard G, Reading R (2008) Successful field capture techniques for free-ranging Argali sheep (Ovis ammon) in Mongolia. Zoo Biol 27:137–144Google Scholar
  28. Kock MD, Jessup DA, Clark RK, Franti CE (1987) Effects of capture on biological parameters in free-ranging bighorn sheep (Ovis canadensis)—evaluation of drop-net, drive-net, chemical immobilization and the net-gun. J Wildl Dis 23:641–651Google Scholar
  29. López-Olvera JR, Marco I, Montané J, Lavin S (2006) Transport stress in Southern chamois (Rupicapra pyrenaica) and its modulation by acepromazine. Vet J 172:347–355Google Scholar
  30. López-Olvera JR, Marco I, Montané J, Casas-Díaz E, Lavin S (2007) Effects of acepromazine on the stress response in Southern chamois (Rupicapra pyrenaica) captured by means of drive-nets. Can J Vet Res 71:41–51Google Scholar
  31. López-Olvera JR, Marco I, Montané J, Casas-Díaz E, Mentaberre G, Lavín S (2009) Comparative evaluation of effort, capture and handling effects of drive nets to capture roe deer (Capreolus capreolus), Southern chamois (Rupicapra pyrenaica) and Spanish ibex (Capra pyrenaica). Eur J Wildl Res 55:193–202Google Scholar
  32. Marco I, Viñas L, Velarde R, Pastor J, Lavin S (1997) Effects of capture and transport on blood parameters in free-ranging mouflon (Ovis ammon). J Zoo Wildl Med 28:428–433Google Scholar
  33. Mautz WW, Seal US, Boardman CB (1980) Blood-serum analyses of chemically and physically restrained white-tailed deer. J Wildlife Manage 44:343–351Google Scholar
  34. Mentaberre G, López-Olvera JR, Casas-Díaz E, Marco I, Lavín S (2009a) Haloperidol and azaperone in drive-net captured Southern chamois (Rupicapra pyrenaica). J Wildl Dis, Accepted on December, 2009Google Scholar
  35. Mentaberre G, López-Olvera JR, Casas-Díaz E, Bach-Raich E, Marco I, Lavín S (2009b). Use of haloperidol and azaperone for stress control in roe deer (Capreolus capreolus) captured by means of drive-nets. Res Vet Sci. doi:10.1016/j.rvsc.2009.11.001Google Scholar
  36. Meyer LC, Fick L, Matthee A, Mitchell D, Fuller A (2008) Hyperthermia in captured impala (Aepyceros melampus), a fright not flight response. J Wildl Dis 44(2):404–416Google Scholar
  37. Montané J, Marco I, López-Olvera JR, Manteca X, Lavin S (2002) Transport stress in roe deer (Capreolus capreolus). Effect of a short-acting antipsychotic Anim Welfare 11:405–417Google Scholar
  38. Montané J, Marco I, López-Olvera JR, Perpiñan D, Manteca X, Lavin S (2003) Effects of acepromazine on capture stress in roe deer (Capreolus capreolus). J Wildl Dis 39:375–386Google Scholar
  39. Plumb DC (2002) Veterinary drug handbook, 4th edn. Iowa State University Press, IowaGoogle Scholar
  40. Porges SW (1985) Spontaneous oscillations in heart rate, potential index of stress. In: Moberg GP (ed) Animal stress. American Physiological Society, Bethesda, pp 97–112Google Scholar
  41. Read MR, McCorkell RB (2002) Use of azaperone and zuclopenthixol acetate to facilitate translocation of white-tailed deer (Odocoileus virginianus). J Zoo Wildl Med 33:163–165Google Scholar
  42. Rehbinder C, Edqvist LE (1981) Influence of stress on some blood-constituents in reindeer (Rangifer tarandus). Acta Vet Scand 22:480–492Google Scholar
  43. Rijnberg AD, Mol JA (1997) Adrenocortical function. In: Kaneko JJ, Harvey JW, Bruss ML (eds) Clinical biochemistry of domestic animals. Academic Press Inc, San Diego, pp 485–516Google Scholar
  44. Spraker TR (1993) Stress and capture myopathy. In: Fowler ME (ed) Zoo and wild animal medicine. Current therapy 3. W.B. Saunders, Philadelphia, pp 481–488Google Scholar
  45. Swan GE (1993) Drugs used for the immobilization, capture and translocation of wild animals. In: McKenzie AE (ed) The capture and care manual. Capture, care, accommodation and transportation of wild African animals. Wildlife Decision Support Services and The South African Veterinary Foundation, Pretoria, pp 2–64Google Scholar
  46. Vassart M, Greth A, Anagariyah S, Mollet F (1992) Biochemical parameters following capture myopathy in one Arabian oryx (Oryx leucoryx). J Vet Med Sci 54:1233–1235Google Scholar
  47. Waas JR, Ingram JR, Matthews LR (1999) Real-time physiological responses of red deer to translocations. J Wildlife Manage 63:1152–1162Google Scholar
  48. Williams ES, Thorne ET (1996) Exertional myopathy (Capture myopathy). In: Fairbrother A, Locke LN, Hoff GL (eds) Noninfectious diseases of wildlife, 2nd edn. Iowa State University Press, Ames, pp 181–193Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Gregorio Mentaberre
    • 1
    Email author
  • Jorge Ramón López-Olvera
    • 1
  • Encarnación Casas-Díaz
    • 1
  • Laura Fernández-Sirera
    • 1
  • Ignasi Marco
    • 1
  • Santiago Lavín
    • 1
  1. 1.Servei d’Ecopatologia de Fauna Salvatge, Facultat de VeterinàriaUniversitat Autònoma de BarcelonaBellaterraSpain

Personalised recommendations