Skip to main content
Log in

Function, size and form of the gastrointestinal tract of the collared Pecari tajacu (Linnaeus 1758) and white-lipped peccary Tayassu pecari (Link 1795)

  • Original Paper
  • Published:
European Journal of Wildlife Research Aims and scope Submit manuscript

Abstract

The peccary digestive tract is characterised by an elaborate forestomach. In order to further characterise the digestive function of peccaries, we report body mass, digestive organ mass, content mass of the gastrointestinal tract compartments and their length and width, as well as liver, parotis and mandibular gland mass. Our data on eleven collared and four white-lipped peccaries suggest that peccaries have a small relative stomach volume compared to other foregut fermenters, which implies a comparatively lower fermentative capacity and thus forage digestibility. The forestomach could enable peccaries to deal, in conjunction with their large parotis glands, with certain plant toxins (e.g. oxalic acid). The finding of sand being trapped in the forestomach blindsacs could indicate a disadvantage of the peccary forestomach design. The relevance of the forestomach to peccaries remains enigmatic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allison MJ, Littledike ET, James LF (1977) Changes in ruminal oxalate degradation rates associated with adaptation to oxalate ingestion. J Anim Sci 45:1173–1179

    CAS  PubMed  Google Scholar 

  • Altrichter M, Carrillo E, Sáenz J, Fuller T (2001) White-lipped peccary (Tayassu pecari, Artiodactyla: Tayassuidae) diet and fruit availability in a Costa Rican rain forest. Rev Biol Trop 49:1183–1192

    CAS  PubMed  Google Scholar 

  • Barreto G, Hernandez O, Ojasti J (1997) Diet of peccaries (Tayassu tajacu and T. pecari) in a dry forest of Venezuela. J Zool 241:279–284

    Article  Google Scholar 

  • Bauchop T, Martucci R (1968) Ruminant-like digestion of the langur monkey. Science 161:698–700

    Article  CAS  PubMed  Google Scholar 

  • Bravo A, Harms KE, Stevens RD, Emmons LH (2008) Collpas: Activity hotspots for frugivorous bats (Phyllostomidae) in the Peruvian Amazon. Biotropica 40:203–210

    Article  Google Scholar 

  • Carl G, Brown R (1983) Protozoa in the forestomach of the Collared Peccary (Tayassu tajacu). J Mammal 64:709

    Article  Google Scholar 

  • Clauss M (2004) A potential interplay of posture, digestive anatomy, density of ingesta and gravity in mammalian herbivores, or why sloths do not rest upside down. Mamm Rev 34:241–245

    Article  Google Scholar 

  • Clauss M, Lechner-Doll M (2001) Differences in selective reticulo-ruminal particle retention as a key factor in ruminant diversification. Oecologia 129:321–327

    Google Scholar 

  • Clauss M, Schwarm A, Ortmann S, Alber D, Flach E, Kühne R, Hummel J, Streich WJ, Hofer H (2004) Intake, ingesta retention, particle size distribution and digestibility in the hippopotamidae. Comp Biochem Physiol 139:449–459

    Article  CAS  Google Scholar 

  • Clauss M, Nijboer J, Loermans J, Roth T, Van der Kuilen J, Beynen A (2008) Comparative digesiton studies in wild suids at Rotterdam zoo. Zoo Biol 27:305–319

    Article  PubMed  Google Scholar 

  • Comizzoli P, Peiniau J, Dutertre C, Planquette P, Aumaitre A (1997) Digestive utilization of concentrated and fibrous diets by two peccary species (Tayassu peccari, Tayassu tajacu) raised in French Guyana. Anim Feed Sci Technol 64:215–226

    Article  CAS  Google Scholar 

  • Dellow D, Hume I (1982) Studies on the nutrition of macropodine marsupials. IV. Digestion in the stomach and the intestine of Macropus giganteus, Thylogale thetis and Macropus eugenii. Aust J Zool 30:767–777

    Article  Google Scholar 

  • Foley WJ, von Engelhardt W, Charles-Dominique P (1995) The passage of digesta, particle size, and in vitro fermentation rate in the three-toed sloth. J Zool 236:681–696

    Article  Google Scholar 

  • Freudenberger D (1992) Gut capacity, functional allocation of gut volume and size distributions of digesta particles in two macropodid marsupials (Macropus robustus robustus and M. r. erubescens) and the feral goat (Capra hircus). Aust J Zool 40:551–561

    Article  Google Scholar 

  • Gallagher J, Varner L, Grant W (1984) Nutrition of the collared peccary in south texas. J Wildl Manage 48:749–761

    Article  Google Scholar 

  • Hofmann R, Streich W, Fickel J, Hummel J, Clauss M (2008) Convergent evolution in feeding types: salivary gland mass differences in wild ruminant species. J Morphol 269:240–257

    Article  PubMed  Google Scholar 

  • Hume I (1977) Production of volatile fatty acids in two species of wallaby and in sheep. Comp Biochem Physiol 56:299–304

    Article  CAS  Google Scholar 

  • Kay R, Hoppe P, Maloiy G (1976) Fermentative digestion of food in the colobus monkey, Colobus polykomos. Specialia 32:485–487

    CAS  Google Scholar 

  • Knott K, Barboza PS, Bowyer R, Blake J (2004) Nutritional development of feeding strategies in arctic ruminants: digestive morphometry of reindeer, Rangifer tarandus, and muskoxen, Ovibos moschatus. Zoology 107:315–333

    Article  PubMed  Google Scholar 

  • Langer P (1978) Anatomy of the stomach of the collared peccary, Dicotyles tajacu. Z Säugetierkd 43:42–59

    Google Scholar 

  • Langer P (1979) Adaptational significance of the forestomach of the collared peccary, Dicotyles tajacu. Mammalia 43:235–245

    Article  Google Scholar 

  • Langer P (1988) The mammalian herbivore stomach. Gustav Fischer, Stuttgart

    Google Scholar 

  • Lentle R, Hume I, Kennedy M, Stafford K, Potter M, Springett B, Haslett S (2002) The histology and morphometrics of the major salivary glands of four species of wallabies (Marsupialia: Macropodiae) from Kawau Island, New Zealand. J Zool 257:403–410

    Article  Google Scholar 

  • Lochmiller R, Hellgren E, Grant W (1986) Absolute and allometric relationships between internal morphology and body mass in the adult collared peccary, Tayassu tajacu (Tayassuidae). Growth 50:296–316

    CAS  PubMed  Google Scholar 

  • MacDonald A, Mitchell S, Signorella A, Leus K (2008) Ultrastructural characterization of the epithelium that constitutes the cardiac gland epithelial ´honeycomb´in the stomach of the babirusa (Babyrousa babyrussa). Anim Biol Pathol 331:32–41

    CAS  Google Scholar 

  • McArthur C, Hagerman AE, Robbins CT (1991) Physiological strategies of mammalian herbivores against plant defenses. In: Palo R, Robbins C (eds) Plant defenses against mammalian herbivory. CRC, Boca Raton, pp 103–114

    Google Scholar 

  • Munn AJ, Banks P, Hume ID (2006) Digestive plasticity of the small intestine and the fermentative hindgut in a marsupial herbivore, the tammar wallaby (Macropus eugenii). Aust J Zool 54:287–291

    Article  Google Scholar 

  • Munn AJ, Clissold F, Tarszisz E, Kimpton K, Dickman CR, Hume ID (2009) hindgut plasticity in wallabies fed hay either unchopped or ground and pelleted: fiber is not the only factor. Physiol Biochem Zool 82:270–279

    Article  CAS  PubMed  Google Scholar 

  • Nogueira-Filho S (2005) The effects of increasing levels of roughage on coefficients of nutrient digestibility in the collared peccary (Tayassu tajacu). Anim Feed Sci Technol 120:151–157

    Article  Google Scholar 

  • Pí JS (1973) Contribution to the ecology of Colobus polykomos satanas (Waterhouse, 1838) of Rio Muni, Republic of Equatorial Guinea. Folia Primat 19:193–207

    Article  Google Scholar 

  • Pond W, Yen J, Lindvall R, Hill D (1981) Dietary alfalfa meal for genetically obese and lean growing pigs: effect on body weight gain and on carcass and gastrointestinal tract measurements and blood metabolites. J Anim Sci 51:367–373

    Google Scholar 

  • Schwarm A, Ortmann S, Kühne R, Caspers B, Kelm D, Clauss M (2005) Comparative analysis of physical and chemical characteristics of faeces from free-ranging and captive collared peccaries (Tayassu tajacu). Proceedings of the 9th Congress of the European Society of Veterinary and Comparative Nutrition, Grugliasco-To (Italy), p 103

  • Schwarm A, Ortmann S, Wolf C, Streich WJ, Clauss M (2008) Excretion patterns of fluid and different sized particle passage markers in banteng (Bos javanicus) and pygmy hippopotamus (Hexaprotodon liberiensis): two functionally different foregut fermenters. Comp Biochem Physiol 150:32–39

    Article  CAS  Google Scholar 

  • Schwarm A, Ortmann S, Wolf C, Streich WJ, Clauss M (2009) Passage marker excretion in red kangaroo (Macropus rufus), collared peccary (Pecari tajacu) and colobine monkeys (Colobus angolensis, C. polykomos, Trachypithecus johnii). J Exp Zool A 311:647–661

    Google Scholar 

  • Sowls LK (1978) Collared peccary. In: Schmidt JL, Gilbert DL (eds) Big game of North America: ecology and management. Stackpole, Harrisburg, pp 191–205

    Google Scholar 

  • Sowls LK (1984) The peccaries. The University of Arizona Press, Tucson

    Google Scholar 

  • Sowls LK (1997) Javelinas and other peccaries: their biology, management, and use, 2nd edn. Texas A&M University Press, College Station

    Google Scholar 

  • Stevens CE, Hume ID (1995) Comparative physiology of the vertebrate digestive system, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Tyson E (1683) Tajacu seu aper Mexicanus moschiferus, or the anatomy of the Mexico musk-hog, etc. Philos Trans 13:359–385

    Article  Google Scholar 

  • Warner A (1981) The mean retention time of digesta markers in the gut of the Tammar, Macropus eugenii. Aust J Zool 29:759–771

    Article  Google Scholar 

  • Wings O, Hatt J, Schwarm A, Clauss M (2008) Gastroliths in a pygmy hippopotamus (Hexaprotodon liberiensis Morton 1984). Senckenb Biol 88:345–348

    Google Scholar 

Download references

Acknowledgements

We thank E. Zollinger, N. Brunclik, O.M. Jurado, P. Zerbe, K. Grahl, T. Dörflein, U. Fritzmann, W. Hildebrandt, Z. Mezoe and their colleagues for logistical help and their aid during dissection and J. Peter from the Institute of Veterinary Anatomy of the University of Zurich for producing the illustrations of the gastrointestinal tracts. This study was supported by grants from the Freie Universität Berlin (NaFöG) to AS and the German Science Foundation (DFG) to SO (OR 86/1-1). Sincere thanks to two anonymous reviewers and J. Axtner and S. Albrecht for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Schwarm.

Additional information

Communicated by F.-J. Kaup

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwarm, A., Ortmann, S., Rietschel, W. et al. Function, size and form of the gastrointestinal tract of the collared Pecari tajacu (Linnaeus 1758) and white-lipped peccary Tayassu pecari (Link 1795). Eur J Wildl Res 56, 569–576 (2010). https://doi.org/10.1007/s10344-009-0348-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10344-009-0348-2

Keywords

Navigation