Landscape fragmentation and habitat suitability in endangered Italian hare (Lepus corsicanus) and European hare (Lepus europaeus) populations

Abstract

During the last years, the population of Italian hare decreased significantly in central and south Italy. This is imputable to harvest, poaching, habitat fragmentation, and the probable competition with congeneric European hare introduced in the last decades by man for hunt. The goal of our work is to define the ecological characteristics of the two aforementioned species in order to understand how landscape facilitates or impedes movement. Spatially explicit models are used to identify a species ecological niche and to build a landscape model of suitability. To validate ecological modeling of landscape, we performed a population genetic analysis. Results suggest that the Italian hare shows an ecological requirement close to average of available resources in the considered landscape. The genetic structure of this autochthonous species validates the habitat suitability model and highlights the differences with European hare. This work analyzes for the first time the ecological relationship between those two sympatric species.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Alves PC, Melo-Ferreira J, Branco M, Suchentrunk F, Ferrand N, Harris DJ (2008) Evidence for genetic similarity of two allopatric European hares (Lepus corsicanus and L. castroviejoi) inferred from nuclear DNA sequences. Mol Phyl Evol 46:1191–1197. doi:10.1016/j.ympev.2007.11.010

    Article  CAS  Google Scholar 

  2. Andersson A, Thulin C, Tegelstrom H (1999) Applicability of rabbit microsatellite primers for studies of hybridisation between an introduced and a native hare species. Hereditas 130:309–315. doi:10.1111/j.1601-5223.1999.00309.x

    PubMed  Article  CAS  Google Scholar 

  3. Angelici FM, Luiselli L (2001) Distribution and status of the critically endangered Apennine hare Lepus corsicanus De Winton, 1898 in continental Italy and Sicily. Oryx 3:245–249. doi:10.1046/j.1365-3008.2001.00182.x

    Google Scholar 

  4. Arnold GW, Steven DE, Weeldenburg JR, Smith EA (1993) Influences of remnant size, spacing pattern and connectivity on population boundaries and demography in euros Macropus robustus living in a fragmented landscape. Biol Conserv 64:219–230. doi:10.1016/0006-3207(93)90323-S

    Article  Google Scholar 

  5. Bergl RA, Oates JF, Fotso R (2007) Distribution and protected area coverage of endemic taxa in West Africa’s Biafran forests and highlands. Biol Conserv 134:195–208. doi:10.1016/j.biocon.2006.08.013

    Article  Google Scholar 

  6. Bertolino S, Perrone A, Gola L, Cordero di Montezemolo N (2007) Poupulation densities and habitat selection of brown hare (Lepus europaeus) and introduced eastern cottontail (Sylvilagus floridanus) in Northern Italy. Hystrix 2:360

    Google Scholar 

  7. Boyce MS, Vernier PR, Nielsen SE, Schmiegelow FKA (2002) Evaluating resource selection functions. Ecol Model 157:281–300. doi:10.1016/S0304-3800(02)00200-4

    Article  Google Scholar 

  8. Bridle JR, Vines TH (2006) Limits to evolution at range margins: when and why does adaptation fail? Trends Ecol Evol 22:140–147. doi:10.1016/j.tree.2006.11.002

    PubMed  Article  Google Scholar 

  9. Burel F, Baudry J (1999) Écologie du paysage. Cencepts méthodes et applications. TEC and DOC, Paris (France)

    Google Scholar 

  10. Burkey TV (1989) Extinction in nature reserves: the effect of fragmentation and the importance of migration between fragments. Oikos 55:75–81. doi:10.2307/3565875

    Article  Google Scholar 

  11. Carmel Y, Naveh Z (2003) Ecosystems and landscapes: Land management implications. Keynote talk at the symposium on Science and Society, The International Association for Landscape Ecology World Congress, Darwin, July 2003

  12. de Filippo G, Fulgione D, Fusco L, Troisi SR (2007) Italian hares (Lepus corsicanus) in Cilento and Vallo di Diano National Park: status and conservation. V European Mammals Congress, Siena, Italia

  13. De Winton WE (1898) On the Hares of Western Europe and North Africa. Ann Mag Nat Hist Lond 1:149–158

    Google Scholar 

  14. Diffendorfer JE, Gaines MS, Holt RD (1995) Habitat fragmentation and movements of three small mammals (Sigmodon, Microtus, and Peromyscus). Ecology 76:827–839. doi:10.2307/1939348

    Article  Google Scholar 

  15. Eastman JR (2002) IDRISI 32.2. Clark Laboratories. The Idrisi Project, Worcester MA

  16. Feldman MW, Bergman A, Pollock DD, Goldstein DB (1997) Microsatellite genetic distances with range constraints: analytic description and problems of estimation. Genetics 145:207–216

    PubMed  CAS  Google Scholar 

  17. Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49. doi:10.1017/S0376892997000088

    Article  Google Scholar 

  18. Frankham R, Ballou JD, Briscoe DA (2006) Fondamenti di genetica della conservazione. Zanichelli, Bologna (Italy)

    Google Scholar 

  19. Galende GI, Raffaele E (2008) Space use of a non-native species, the European hare (Lepus europaeus), in habitats of the southern Vizcacha (Lagidium viscacia) in Northwestern Patagonia, Argentina. Eur J Wildl Res 54:299–304. doi:10.1007/s10344-007-0148-5

    Article  Google Scholar 

  20. Gibbs JP (1998) Distribution of woodland amphibians along a forest fragmentation gradient. Landsc Ecol 13:263–268. doi:10.1023/A:1008056424692

    Article  Google Scholar 

  21. Gissi C, Gullberg A, Arnason U (1998) The complete mitochondrial DNA sequence of the rabbit, Oryctolagus cuniculus. Genomics 50:161–169. doi:10.1006/geno.1998.5282

    PubMed  Article  CAS  Google Scholar 

  22. Hager HA (1998) Area-sensitivity of reptiles and amphibians: are there indicator species for habitat fragmentation? Ecoscience 5:139–147

    Google Scholar 

  23. Hanski I (1994) Patch-occupancy dynamics in fragmented landscapes. Trends Ecol Evol 9:131–135. doi:10.1016/0169-5347(94)90177-5

    Article  Google Scholar 

  24. Hirzel AH, Arlettaz R (2003) Modelling habitat suitability for complex species distributions by the environmental-distance geometric mean. Environ Manage 32:614–623. doi:10.1007/s00267-003-0040-3

    PubMed  Article  Google Scholar 

  25. Hirzel AH, Hausser J, Chessel D, Perrin N (2002) Ecological niche factor analysis: how to compute habitat suitability maps without absence data? Ecology 83:2027–2036

    Article  Google Scholar 

  26. Hirzel AH, Hausser J, Perrin N (2004) Biomapper 3.1. Lab. of Conservation Biology, Department of Ecology and Evolution, University of Lausanne. URL: http://www.unil.ch/biomapper

  27. Hirzel AH, Hausser J, Perrin N (2005) Biomapper 3.2. Laboratory of Conservation Biology. Department of Ecology and Evolution. University of Lausanne, Lausanne. Available at: http://www.unil.ch/biomapper

  28. Hirzel AH, Le Lay G, Helfer V, Randin C, Guisan A (2006) Evaluating the ability of habitat suitability models to predict species presences. Ecol Model 199:142–152. doi:10.1016/j.ecolmodel.2006.05.017

    Article  Google Scholar 

  29. Hirzel AH, Hausser J, Perrin N (2007). Biomapper 4.0. Laboratory for Conservation Biology, Department of Ecology and Evolution, University of Lausanne, Switzerland. URL: http://www2.unil.ch/biomapper

  30. Hurlbert SH (1978) The measurement of niche overlap and some relatives. Ecology 59:67–77. doi:10.2307/1936632

    Article  Google Scholar 

  31. Jackson DA (1993) Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74:2204–2214. doi:10.2307/1939574

    Article  Google Scholar 

  32. Knapp RA, Matthews KR, Sarnell O (2001) Resistance and resilience of alpine lake fauna to fish introductions. Ecol Monogr 71:401–421

    Google Scholar 

  33. Krohne DT (1997) Dynamics of metapopulations of small mammals. J Mammal 78:1014–1026. doi:10.2307/1383045

    Article  Google Scholar 

  34. Kryger U, Robinson TJ, Bloomer P (2002) Isolation, characterization of six polymorphic microsatellite loci in South African hares (Lepus saxatilis F. Cuvier, 1823 and Lepus capensis Linnaeus, 1758). Mol Ecol Notes 2:422–424. doi:10.1046/j.1471-8286.2002.00265.x

    Article  CAS  Google Scholar 

  35. Legendre L, Legendre P (1998) Numerical ecology, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  36. Lo Valvo M, Barera A, Seminara S (1997) Biometria e status della Lepre appenninica (Lepus corsicanus, de Winton 1898) in Sicilia. Nat Sicil 21:67–74

    Google Scholar 

  37. Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197. doi:10.1016/S0169-5347(03)00008-9

    Article  Google Scholar 

  38. Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:243–253. doi:10.1038/35012251

    PubMed  Article  CAS  Google Scholar 

  39. McCullough DR (1996) Metapopulation and wildlife conservation. Island, Washington, DC

    Google Scholar 

  40. Mech SG, Hallett JG (2001) Evaluating the effectiveness of corridors: a genetic approach. Conserv Biol 15:467–474. doi:10.1046/j.1523-1739.2001.015002467.x

    Article  Google Scholar 

  41. Mougel F, Mounolou JC, Monnerot M (1997) Nine polymorphic microsatellite loci in the rabbit, Oryctolagus cuniculus. Anim Genet 28:58–71. doi:10.1111/j.1365-2052.1997.00047.x

    PubMed  Article  CAS  Google Scholar 

  42. Nauta MJ, Weissing FJ (1996) Constraints on allele size at microsatellite loci: implications for genetic differentiation. Genetics 143:1021–1032

    PubMed  CAS  Google Scholar 

  43. Naveh Z, Carmel Y (2003) The evolution of the cultural Mediterranean landscape in Israel as affected by fire, grazing, and human activities. In: Wasser SP (ed) Evolutionary theory and processes: modern horizons. Kluwer Academic, The Netherlands, pp 337–409

    Google Scholar 

  44. Noss RE, Quigley HB, Hornocker MG, Merrill T, Paquet PC (1996) Conservation biology and carnivore conservation in the Rocky Mountains. Conserv Biol 10:949–963. doi:10.1046/j.1523-1739.1996.10040949.x

    Article  Google Scholar 

  45. Palacios F (1996) Systematics of the indigenous hares of Italy traditionally identified as Lepus europaeus Pallas, 1778 (Mammalia: Leporidae). Bonn Zool Beitr 46:59–91

    Google Scholar 

  46. Parkes J (2001) Methods to monitor the density and impact of hares (Lepus europaeus) in grassland in New Zeland. Doc. Science Internal Series 8. Dept. Conservation, Wellington, New Zealand

  47. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. doi:10.1111/j.1471-8286.2005.01155.x

    Article  Google Scholar 

  48. Penn AM, Sherwin WB, Gordon G, Lunney D, Melzer A, Lacy RC (2000) Demographic forecasting in koala conservation. Conserv Biol 14:629–638. doi:10.1046/j.1523-1739.2000.99385.x

    Article  Google Scholar 

  49. Pierpaoli M, Riga F, Trocchi V, Randi E (1999) Species distinction and evolutionary relationships of the Italian hare (Lepus corsicanus) as described by mitochondrial DNA sequencing. Mol Ecol 8:1805–1817. doi:10.1046/j.1365-294x.1999.00766.x

    PubMed  Article  CAS  Google Scholar 

  50. Ray N (2005) Pathmatrix: a geographical information system tool to compute effective distances among samples. Mol Ecol Notes 5:177–180. doi:10.1111/j.1471-8286.2004.00843.x

    Article  Google Scholar 

  51. Raymond M, Rousset F (1995) Genepop Version 1.2: population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  52. Riga F, Trocchi V, Randi E, Toso S (2001) Morphometric differentiation between the Italian Hare (Lepus corsicanus, De Winton, 1998) and the European brown hare (Lepus europaeus, Pallas, 1778). J Zool (Lond) 253:241–252. doi:10.1017/S0952836901000218

    Article  Google Scholar 

  53. Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    PubMed  CAS  Google Scholar 

  54. Rousset F (2000) Genetic differentiation between individuals. J Evol Biol 13:58–62. doi:10.1046/j.1420-9101.2000.00137.x

    Article  Google Scholar 

  55. Rundel PW, Montenegro G, Jaksic FM (1998) Landscape disturbance and biodiversity in Mediterranean-type ecosystems. Springer, New York. ISBN 354064475X

    Google Scholar 

  56. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Laboratory Press, Cold Spring Harbor

    Google Scholar 

  57. Santos X, Brito JC, Sillero N, Pleguezuelos JM, Llorente GA, Fahd S, Parellada X (2006) Inferring habitat-suitability areas with ecological modelling techniques and GIS: a contribution to assess the conservation status of Vipera latastei. Biol Conserv 130:416–425. doi:10.1016/j.biocon.2006.01.003

    Article  Google Scholar 

  58. Segurado P, Araújo MB (2004) An evaluation of methods for modelling species distributions. J Biogeogr 31:1555–1568. doi:10.1111/j.1365-2699.2004.01076.x

    Article  Google Scholar 

  59. Sokal RR, Rohlf FJ (1994) Biometry. Freeman, New York

    Google Scholar 

  60. Soulé ME, Alberts AC, Bolger DT (1992) The effects of habitat fragmentation on chaparral plants and vertebrates. Oikos 63:39–47. doi:10.2307/3545514

    Article  Google Scholar 

  61. Stockwell DRB, Peterson AT (2002) Effects of sample size on accuracy of species distribution models. Ecol Model 148:1–13. doi:10.1016/S0304-3800(01)00388-X

    Article  Google Scholar 

  62. Storfer A, Murphy MA, Evans JS, Goldberg CS, Robinson S, Spear SF, Dezzani R, Delmelle E (2007) Putting the ‘landscape’ in landscape genetics. Heredity 98:128–142. doi:10.1038/sj.hdy.6800917

    PubMed  Article  CAS  Google Scholar 

  63. Taylor PD, Fahrig L, Henein K, Merriam G (1993) Connectivity is a vital element of landscape structure. Oikos 68:571–573. doi:10.2307/3544927

    Article  Google Scholar 

  64. Thulin CG, Fang M, Averianov AO (2006) Introgression from Lepus europaeus to Lepus timidus in Russia revealed by mitochondrial single nucleotide polymorphisms and nuclear microsatellites. Hereditas 143:68–76. doi:10.1111/j.2006.0018-0661.01952.x

    PubMed  Article  Google Scholar 

  65. Trizio I, Crestanello B, Galbusera P, Wauters LA, Tosi G, Matthysen E, Hauffe HC (2005) Geographical distance and physical barriers shape the genetic structure of Eurasian red squirrels (Sciurus vulgaris) in the Italian Alps. Mol Ecol 14:469–481. doi:10.1111/j.1365-294X.2005.02428.x

    PubMed  Article  CAS  Google Scholar 

  66. Trocchi V, Riga F (2001) Piano d’azione nazionale per la Lepre italica (Lepus corsicanus). Quad. Cons. Natura, 9, Min. Ambiente-Ist. Naz. Fauna Selvatica.

  67. Vos CC, Antonisse-De Jong AG, Goedharts PW, Smulders MJM (2001) Genetic similarity as a measure for connectivity between fragmented populations of the moor frog (Rana arvalis). Heredity 86:598–608. doi:10.1046/j.1365-2540.2001.00865.x

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

The logistic and financial support from the University of Naples Federico II and Ambito Territoriale di Caccia delle Aree Contigue al Parco Nazionale del Cilento e Vallo di Diano are acknowledged. We would like to thank Rachel Black for the language revisions made in the manuscript and Gabriele de Filippo who furnished many field data and suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Domenico Fulgione.

Additional information

Communicated by C. Gortázar

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fulgione, D., Maselli, V., Pavarese, G. et al. Landscape fragmentation and habitat suitability in endangered Italian hare (Lepus corsicanus) and European hare (Lepus europaeus) populations. Eur J Wildl Res 55, 385–396 (2009). https://doi.org/10.1007/s10344-009-0256-5

Download citation

Keywords

  • ENFA
  • Landscape genetics
  • Lepus
  • Microsatellite