European Journal of Wildlife Research

, Volume 55, Issue 2, pp 117–123 | Cite as

Selective culling of Iberian red deer stags (Cervus elaphus hispanicus) by selective montería in Spain

  • Jerónimo Torres-Porras
  • Juan Carranza
  • Javier Pérez-González
Original Paper


Hunting can affect animal populations not only by increasing mortality but also by introducing selection components associated with particular features of individuals. In addition to the most widespread hunting system in Spain for Iberian red deer stags (Cervus elaphus hispanicus) called montería, there are also selective monterías aimed at culling poor-trophy males in order to improve the average quality of the trophies for commercial hunt. This way of removing poor-trophy males contrasts with the most common procedure of shooting individual males by selective stalking that is used in other areas of Europe. Also, due to the hunting procedure by which most deer are shot while running chased by dogs, it is doubtful whether hunters are actually producing a selective impact on deer populations. In this paper, we compare data of males shot in commercial montería and in selective montería in Southern Spain. We found that males in selective montería were smaller in body size and in antler size than in commercial hunts, even correcting by age, although the selective effect was stronger at some ages. We discuss the implications of this practice for sustainable use and conservation.


Iberian red deer Cervus elaphus Hunting Selective culling Management Ungulates 


  1. Alarcos S (2007) Consecuencias de las estrategias reproductivas de machos y hembras sobre la morfología, desarrollo y longevidad del ciervo ibérico. Ph.D. thesis, University of ExtremaduraGoogle Scholar
  2. Anderson M (1994) Sexual selection. Princeton University Press, PrincetonGoogle Scholar
  3. Bonenfant C, Gaillard JM, Loison A, Klein F (2003) Sex ratio variation and reproductive costs in relation to density in a forest-dwelling population of red deer (Cervus elaphus). Behav Ecol 14:862–869 doi:10.1093/beheco/arg077 CrossRefGoogle Scholar
  4. Bubenik AB (1987) Behaviour of moose (Alces alces ssp.) of North America. Swed Wildl Res Suppl 1:333–365Google Scholar
  5. Carranza J (1999) Aplicaciones de la Etología al manejo de las poblaciones de ciervo en el suroeste de la Península Ibérica: producción y conservación. Etologia 7:5–18Google Scholar
  6. Carranza J, Martínez JG (2002) Consideraciones Evolutivas en la Gestión de Especies Cinegéticas. In: Soler M (ed) Evolución: la base de la Biología. Proyecto Sur, Granada, pp 373–387Google Scholar
  7. Carranza J, Alarcos S, Sánchez-Prieto CB, Valencia J, Mateos C (2004) Disposable-soma senescence mediated by sexual selection in an ungulate. Nature 432:215–218 doi:10.1038/nature03004 PubMedCrossRefGoogle Scholar
  8. Clutton-Brock TH, Lonergan ME (1994) Culling regimes and sex ratio biases in highland red deer. J Appl Ecol 31:521–527 doi:10.2307/2404447 CrossRefGoogle Scholar
  9. Collier BA, Krementz DG (2007) Uncertainty in age-specific harvest estimates and consequences for white-tailed deer management. Ecol model 201:194–204CrossRefGoogle Scholar
  10. Coltman DW (2008) Evolutionary rebound from selective harvesting. Trends Ecol Evol 23(3):117–118 doi:10.1016/j.tree.2007.12.002 PubMedCrossRefGoogle Scholar
  11. Coltman DW, O’Donoghue P, Jorgenson JT, Hogg JT, Strobeck C, Festa-Bianchet M (2003) Undesirable evolutionary consequences of trophy hunting. Nature 426:655–658 doi:10.1038/nature02177 PubMedCrossRefGoogle Scholar
  12. Crichton V (1992) Six years (1986/87–1991/92) summary of in utero productivity of moose in Manitoba, Canada. Alces 28:203–214Google Scholar
  13. Forsyth DM (1999) Long-term harvesting and male migration in a New Zealand population of Himalayan tahr Hemitragus jemlahicus. J Appl Ecol 36:351–362 doi:10.1046/j.1365-2664.1999.00410.x CrossRefGoogle Scholar
  14. Garel M, Cugnase JM, Maillard D, Gaillard JM, Hewison AJM, Dubray M (2007) Selective harvesting and habitat loss produce long-term life history changes in a mouflon population. Ecol Appl 17:1607–1618 doi:10.1890/06-0898.1 PubMedCrossRefGoogle Scholar
  15. Ginsberg JR, Milner-Gulland EJ (1994) Sex-biased harvesting and population-dynamics in ungulates-implications for conservation and sustainable use. Conserv Biol 8:157–166 doi:10.1046/j.1523-1739.1994.08010157.x CrossRefGoogle Scholar
  16. Hartl DL, Clark AG (1997) Principles of population genetics, 3rd edn. Sinauer, SunderlandGoogle Scholar
  17. Kruuk LEB, Clutton-Brock TH, Slate J, Pemberton JM (2002) Antler size in red deer: heritability and selection, but no evolution. Evolution Int J Org Evolution 56:1683–1695Google Scholar
  18. Langvatn R, Loison A (1999) Consequences of harvesting on age structure, sex ratio and population dynamics of red deer Cervus elaphus in central Norway. Wildl Biol 5(4):213–223Google Scholar
  19. Laurian C, Ouellet JP, Courtois R, Breton L, St-Onge S (2000) Effects of intensive harvesting on moose reproduction. J Appl Ecol 37:515–531 doi:10.1046/j.1365-2664.2000.00520.x CrossRefGoogle Scholar
  20. Loe LE, Mysterud A, Langvatn R, Stenseth NC (2003) Decelerating and sex-dependent tooth wear in Norwegian red deer. Oecologia 135:346–353PubMedGoogle Scholar
  21. Malo AF, Roldan ERS, Garde J, Soler A, Gomendio M (2005) Antlers honestly advertise sperm production and quality. Proc R Soc Lond B Biol Sci 272:149–157 doi:10.1098/rspb.2004.2933 CrossRefGoogle Scholar
  22. Martínez M, Rodriguez-Vigal C, Jones OR, Coulson T, San Miguel A (2005) Different hunting strategies select for different weights in red deer. Biol Lett 1:353–356 doi:10.1098/rsbl.2005.0330 PubMedCrossRefGoogle Scholar
  23. Mesía-Figueroa F, Figueroa E, Martínez-Yebes A (1978) La caza selectiva del venado. Sever-Cuesta, ValladolidGoogle Scholar
  24. Milner-Gulland EJ, Bukreeva OM, Coulson T, Lushchekina AA, Kholodova MV, Bekenov AB et al (2003) Reproductive collapse in saiga antelope harems. Nature 422:135 doi:10.1038/422135a PubMedCrossRefGoogle Scholar
  25. Mitchell B (1967) Growth layers in dental cement food for determining the age of red deer (Cervus elaphus L.). J Anim Ecol 36:279–293 doi:10.2307/2912 CrossRefGoogle Scholar
  26. Mysterud A, Yoccoz NG, Stenseth NC, Langvatn R (2001) Effects of age, sex, and density on body weight of Norwegian red deer: evidence of density-dependence senescence. Proc R Soc Lon B 268:911–919 doi:10.1098/rspb.2001.1585 CrossRefGoogle Scholar
  27. Nahlik AJ (1992) Management of deer and their habitat. Principles and methods. Wilson Hunt Press. GillinghamGoogle Scholar
  28. Nunney L (1993) The influence of mating system and overlapping generations on effective population size. Evolution Int J Org Evolution 47:1329–1341 doi:10.2307/2410151 Google Scholar
  29. Palumbi SR (2001) Evolution—humans as the world’s greatest evolutionary force. Science 293:1786–1790 doi:10.1126/science.293.5536.1786 PubMedCrossRefGoogle Scholar
  30. Ryman N, Baccus R, Reuterwall C, Smith MH (1981) Effective population size, generation interval, and potential loss of genetic variability in game species under different hunting regimes. Oikos 36:257–266 doi:10.2307/3544622 CrossRefGoogle Scholar
  31. Schwartz CC (1992) Reproductive biology of North American moose. Alces 28:165–173Google Scholar
  32. Wilton ML (1992) Implications of hunting moose during pre-rut and rut activity. Alces 28:31–34Google Scholar
  33. Wilton ML (1995) The case against calling and hunting dominant moose during the main rut period—a viewpoint. Alces 31:173–180Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Jerónimo Torres-Porras
    • 1
  • Juan Carranza
    • 1
  • Javier Pérez-González
    • 1
  1. 1.Evolutionary Biology, Ethology and Wildlife Management Research GroupUniversity of ExtremaduraCáceresSpain

Personalised recommendations