Skip to main content

Bullet-derived lead in tissues of the wild boar (Sus scrofa) and red deer (Cervus elaphus)

Abstract

Bullet-derived lead in game food products is an important source of human contamination. Careless removal of tissues from around the bullet pathway in the animal body results in elevated lead doses being ingested by humans. To assess bullet-derived lead contamination of soft game tissues, muscle tissue samples were collected from ten wild boars and ten red deer immediately after they had been shot. The samples were collected from around the entry and exit wounds, from around the bullet pathway at different sites along its length, and from a distance of about 5, 15, 25, and 30 cm from the bullet track. The individuals examined differed in the lead contents in their tissues surrounding the entry and exit wounds and at different sites along the bullet pathway. One of the animals showed as much lead as 1,095.9 mg kg−1 wet weight in the tissue surrounding the bullet track near the entry wound, 736.0 mg kg−1 being recorded around the exit wound.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Baranowski H (1993a) Działanie rażące pocisków kulowych. [Killing efficiency of bullet-type projectiles]. Łow Pol 7:26–27 [in Polish]

    Google Scholar 

  • Baranowski H (1993b) Głębokość penetracji pocisków grzybkujących. [Penetration depth of mushrooming bullets]. Łow Pol 8:22–23 [in Polish]

    Google Scholar 

  • Baranowski H (1993c) Jak przebiega penetracja pocisku półpłaszczowego. ? [How does a half-jacketed bullet penetrate?]. Łow Pol 9:26–27 [in Polish]

    Google Scholar 

  • Clark AJ, Scheuhammer AM (2003) Lead poisoning in upland-foraging birds of prey in Canada. Ecotoxicology 12(1–4):23–30

    PubMed  Article  CAS  Google Scholar 

  • Commission Regulation (EC) (2001) No. 466/2001 of March 2001. Official Journal of the European Communities

  • Custer TW, Hofman WL (1994) Trace elements in canvasbacks (Aythia valisneria) Wintering in Louisiana USA 1987–1988. Environ Pollut 84:253–259

    PubMed  Article  CAS  Google Scholar 

  • Dobrowolska A, Melosik M (2002) Ołów postrzałowy jako źródło skażenia dziczyzny. . Shot-derived lead—a source of contamination in game animals. Folia Univ Agric Stetin Zootech 227(44):41–44

    CAS  Google Scholar 

  • Elvestad K, Karlog O, Clausen B (1982) Heavy metals (copper, cadmium, lead, mercury) in mute swans from Denmark. Nord Vet Med 34:92–97

    PubMed  CAS  Google Scholar 

  • European Commission Enterprise Directorate-General (2004) Advantages and drawbacks of restricting the marketing and use of lead in ammunition, fishing sinkers and candle wicks. Final Report, pp 1–216

  • Floriańczyk B (1997) Toksyczne właściwości ołowiu. [Toxic properties of lead]. Probl Lek 3:169–176 [in Polish]

    Google Scholar 

  • Fry DM (2003) Assessment of lead contamination sources exposing California Condors. Species Conservation and Recovery Program Report 2003-02

  • Guitart R, Serratosa J, Thomas VG (2002) Lead-poisoned wildfowl in Spain: a significant threat for human consumers. Int J Environ Health Res 12(4):301–309

    PubMed  Article  CAS  Google Scholar 

  • Heinz GH, Hoffman DJ, Sileo L, Audet DJ, LeCaptain LJ (1999) Toxicity of lead-contaminated sediment to mallards. Arch Environ Cont Toxicol 36:323–333

    Article  CAS  Google Scholar 

  • Johansen P, Asmund G, Rigest F (2004) High human exposure to lead through consumption of birds hunted with lead shot. Environ Pollut 127(1):125–129

    PubMed  Article  CAS  Google Scholar 

  • Kock M, Kosmus W, Pichler-Semmelrock FP, Sixl W (1989) Accumulation of heavy metals in animals. Part 1: Lead and cadmium contamination in some wild animals. J Hyg Epidemiol Microbiol Immunol 33(4 Suppl):521–528

    PubMed  CAS  Google Scholar 

  • Kramarova M, Massanyi P, Slamecka J, Tataruch F, Jancova A, Gasparik J, Fabis M, Kovacik J, Toman R, Galova J, Jurcik R (2005) Distribution of cadmium and lead in liver and kidney of some wild animals in Slovakia. J Environ Sci Health Part A Environ Sci Eng Toxic Hazard Subst 40(3):593–600

    Article  CAS  Google Scholar 

  • Lazarus M, Vickovic I, Sostaric B, Blanusa M (2005) Heavy metal levels in tissues of red deer (Cervus elaphus) from eastern Croatia. Arh Hig Rada Toksikol 56:233–240

    PubMed  CAS  Google Scholar 

  • Levengood JM (2003) Cadmium and lead in tissues of Mallards (Anas platyrhynchos) and wood ducts (Aix sponsa) using the Illions River (USA). Environ Pollut 122(2):177–181

    PubMed  Article  CAS  Google Scholar 

  • Meissner W (1993) Ołów–powolna śmierć. [Lead, the slow death]. Łow Pol 4:21 [in Polish]

    Google Scholar 

  • Monkiewicz J, Jaczewski S (1990) Rozmieszczenie ołowiu w tuszy dzików w zależności od odległości od rany postrzałowej. [Lead distribution in wild boar carcass in relation to the distance away from the shot wound]. Med Wet 46:187–188 [in Polish]

    Google Scholar 

  • Norman FI, Garnham JS, Lowe KW (1993) Further notes on lead concentrations in tissue of waterfowl in Wictoria. Wild Res 20:621–624

    Article  Google Scholar 

  • Piskorova L, Vasilkova Z, Krupicer I (2003) Heavy metal residues in tissues of Wild boar (Sus scrofa) and red fox (Vulpes vulpes) in the Central Zemplin region of the Slovak Republic Czech. J Anim Sci 48(3):134–138

    CAS  Google Scholar 

  • Pokorny B (2000) Roe deer Capreolus capreolus as an accumulative bioindicator of heavy metals in Slovenia. Web Ecology 1:54–62

    Google Scholar 

  • Potts GR (2005) Incidence of ingested lead gunshot in wild grey partridges (Perdix perdix) from the UK. Eur J Wildl Res 51:31–34

    Article  Google Scholar 

  • Santiago D, Motas-Guzman M, Reja A, Maria-Mojica P, Rodero B, Garcia Fernandez AJ (1998) Lead and cadmium in deer and wild boar from Sierra Morena Mountains (Andalusia, Spain). Bull Contam Toxicol 61:730–737

    Article  CAS  Google Scholar 

  • Scheuhammer AM (1989) Monitoring wild bird pollutions for lead exposure. J Wildl Manage 53(3):759–765

    Article  Google Scholar 

  • Scheuhammer AM (1991) Effects of acidification on the availability of toxic metals and calcium to wild birds and mammals. Environ Pollut 71:329–375

    PubMed  Article  CAS  Google Scholar 

  • Szkoda J, Żmudzki J (2005) Determination of lead and cadmium in biological material by graphite furnace atomic absorption spectrometry method. Bull Vet Inst Pulawy 49:89–92

    Google Scholar 

  • Wickson RJ, Norman FI, Bacher GJ, Garnham JS (1992) Concentrations of lead in bone and other tissues of Wiktorian Waterfowl. Wild Res 19:221–232

    Article  Google Scholar 

  • Wolkers H, Wensing T, Groot Bruinderink GW (1994) Heavy metal contamination in organs of red deer (Cervus elaphus) and wild boar (Sus scrofa) and the effect on some trace elements. Sci Total Environ 144(1–3):191–199

    PubMed  Article  CAS  Google Scholar 

  • Żmudzki J (1977) Oznaczenie zawartości ołowiu w materiale biologicznym metodą spektrofotometrii atomowo-absorpcyjnej. [Lead assays in biological materials with atomic absorption spectrophotometry]. Med Wet 3:179–181 [in Polish]

    Google Scholar 

Download references

Acknowledgements

We are grateful to two anonymous reviewers whose comments helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dobrowolska.

Additional information

Communicated by H. Kierdorf

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dobrowolska, A., Melosik, M. Bullet-derived lead in tissues of the wild boar (Sus scrofa) and red deer (Cervus elaphus). Eur J Wildl Res 54, 231–235 (2008). https://doi.org/10.1007/s10344-007-0134-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10344-007-0134-y

Keywords

  • Bullet-derived lead
  • Bullet wounds
  • Red deer
  • Wild boar