Skip to main content
Log in

Influence of Simulated Tembotrione Drift on Growth and Yield of Drip-Irrigated Tomato

  • Original Article / Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

Tembotrione is a herbicide belonging to the triketone group, which is commonly used for postemergence weed control in maize fields. However, its application can have unintended effects on plants growing on neighboring land, due to factors such as spray drift, carryover, and residue in soils. These off-target effects can potentially cause harm to non-target plants and ecosystems. Off-target application of tembotrione to tomato plants can result in negative effects such as various patterns of chlorosis and reduction in growth, yield, and quality. These effects can adversely impact tomato plants and their ability to produce healthy fruit. Field trials were conducted to explain the negative effects of tembotrione on tomato plants at a rate of 20% of the recommended dose specified on the label. Several growth parameters were measured during the trial to assess the impact of tembotrione on tomato plants: fresh and dry biomass of plants (g), leaf area (cm2), yield (kg plot−1), fruit length (cm), fruit diameter (cm), titrable acidity (%), soluble solid content (%), and pH. According to the results obtained, tembotrione negatively affected tomato plants. The applied dose of tembotrione mostly had a negative effect on the quality of both the tomato foliage and fruits. However, despite this negative effect, there was no statistically significant impact on the yield. In fact, the yield slightly increased as a result of tembotrione treatment. On the other hand, use of tembotrione caused a decrease in the marketable yield of tomatoes due to a reduction in the visual quality of the fruits. Additionally, the tembotrione drift simulation treatment resulted in an increase of approximately 17.5% in titrable acidity (TA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Accinelli C, Vicari A, Pisa PP, Catizone P (1999) Losses of atrazine, metalochlor, prosulfuron and triasulfuron in subsurface drain water. Abstracts 11th EWRS Symposium, Basel, p 139

    Google Scholar 

  • Anonymous (2021) The use of pesticides in developing countries and their impact on health and the right to food. Policy department for external relations, Directorate General for External Policies of the Union 653.622, https://www.europarl.europa.eu/thinktank/en/document/EXPO_STU(2021)653622

  • Aregay FA, Minjuan Z (2012) Impact of irrigation on fertilizer use decision of farmers in China: a case study in Weihe river basin. J Sustain Dev. https://doi.org/10.5539/jsd.v5n4p7

    Article  Google Scholar 

  • Barabasz W, Albińska D, Jaśkowska M, Lipiec J (2002) Biological effects of mineral nitrogen fertilization on soil microorganisms. Pol J Enviromental Stud 11:193–198

    Google Scholar 

  • Carlsen SCK, Spliid NH, Svensmark B (2006) Drift of 10 herbicides after tractor spray application. 2.Primary drift (droplet drift). Chemoshere 64:778–786. https://doi.org/10.1016/j.chemosphere.2005.10.060

    Article  CAS  Google Scholar 

  • Carneiro GDOP, Bontempo FA, Guimarães FAR, Reis MR, Silva DV, Souza MF, Lins HA (2019) Carryover tembotrione and atrazine in sugar beet. Cien Investig Agrar 46(3):319–324. https://doi.org/10.7764/rcia.v46i3.2006

    Article  Google Scholar 

  • Chakrabarty T, Akter S, Saifullah ASM, Sheikh SMD, Bhowmick AC (2014) Use of fertilizer and pesticide for crop production in Agrarian area of Tangail district, Bangladesh. Eniriment Ecol Res 2(6):253–261. https://doi.org/10.13189/eer.2014.020605

    Article  Google Scholar 

  • Chu CC, Plate H, Matthews DL (1984) Fertilizer injury to patatoes as affected by fertilizer source, rate and placement. Am J Potato Res 55:117–121

    Google Scholar 

  • Eberlein CV, Westra P, Hederlie LC, Whitmore JC, Guttieri MJ (1997) Herbicide drift and carryover injury in potatoes. Pacific Northwest Extension Publ, Idaho, p 498

    Google Scholar 

  • FAO (2021) Food and agriculture organization of the United Nations statistics division website. http://www.fao.org/faostat/en/#data/QC/visualize. Accessed December 2022

  • Galhano V, Laranjo GJ, Valiente EF, Videira R, Peixoto F (2011) Impact of herbicides on non-target organisms in sustainable irrigated rice production systems: state of knowledge and future prospects, p 45 (chapter 2)

    Google Scholar 

  • Gungor Y, Erozel AZ, Yıldırım O (1996) Irrigation. Publication No: 1443, Lecture 259 Book: 424. Ankara University, Faculty of Agriculture, Ankara

    Google Scholar 

  • Henareh M, Dursun A, Mandoulakani BA (2015) Genetic diversity in tomato landraces collected from Turkey and Iran revealed by morphological characters. Acta Sci Pol Hortorum Cultus 14(2):87–96

    Google Scholar 

  • Howell T (2001) Enhancing water use efficiency in irrigated agriculture. Argon J 93:281–289. https://doi.org/10.2134/agronj2001.932281x

    Article  Google Scholar 

  • Lovelace LM, Talbert RE, Scherder EF, Hoagland RE (2007) Effects of multiple applications of smilated quinclorac drift rates on tomato. Weed Sci 55(2):169–177. https://doi.org/10.1614/WS-06-054

    Article  CAS  Google Scholar 

  • Nordby A, Skuterud R (1974) The effects of bloom height, working pressure and wind speed on spray drift. Weed Res 14:385–395

    Article  Google Scholar 

  • Olofsdotter M, Watson A, Piggin C (1998) Weeds a looming problem in modern rice production. In: sustainability of rice in the global food system. In: Dowling NG, Greanfield SM, Fisher KS (eds) Pasific basin study center, international rice research institute. Davis, pp 165–173. ISBN 971-22-0107‑4

    Google Scholar 

  • Pham DM, Hwang H, Park SW, Cui M, Lee H, Chun C (2019) Leaf chlorosis, epinasty, carbohydrate contents and growth of tomato show different responses to the red/blue wavelength ratio under continuous light. Plant Physiol Biochem 141:477–486. https://doi.org/10.1016/j.plaphy.2019.06.004

    Article  PubMed  Google Scholar 

  • Rosemmand A (2000) Herbicide movement in soils: principles, pathways and processes. Weed Res 40:113–122. https://doi.org/10.1046/j.1365-3180.2000.00157.x

    Article  Google Scholar 

  • Thornton (2001) Chemical injury. In: Stevenson WR, Loria R, Franc GD, Weingartner DP (eds) Compendium of potato diseases. American Phytopathological Society, Saint Paul, pp 92–94

    Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Dr. Hamit Altay for his assistance in the translation of the abstract into German.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Yıldırım.

Ethics declarations

Conflict of interest

M. Yıldırım, S. Kaya and U. Mucan declare that they have no competing interests.

Rights and permissions

Springer Nature oder sein Lizenzgeber (z.B. eine Gesellschaft oder ein*e andere*r Vertragspartner*in) hält die ausschließlichen Nutzungsrechte an diesem Artikel kraft eines Verlagsvertrags mit dem/den Autor*in(nen) oder anderen Rechteinhaber*in(nen); die Selbstarchivierung der akzeptierten Manuskriptversion dieses Artikels durch Autor*in(nen) unterliegt ausschließlich den Bedingungen dieses Verlagsvertrags und dem geltenden Recht.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yıldırım, M., Kaya, S. & Mucan, U. Influence of Simulated Tembotrione Drift on Growth and Yield of Drip-Irrigated Tomato. Gesunde Pflanzen 75, 2319–2325 (2023). https://doi.org/10.1007/s10343-023-00891-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-023-00891-8

Keywords

Navigation