Skip to main content

Advertisement

Log in

Foliar Application of Zinc, Boron, and Iron Improved Seed Nutrients, Protein Content, and Yield in Late-Sown Stressed Lentil (Lens culinaris Medikus) Crop

  • Original Article / Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

Human micronutrient deficiencies are a major issue around the globe and mostly affect those whose diets are primarily made up of plant-based foods and do not contain sufficient quantities of important vitamins and minerals. Micronutrient deficiency in plants is associated with their declining level in soils, limited bioavailability, and the presence of abiotic stressors that interfere with the healthy growth and development of plants. Field experiments were conducted in lentil sown at two different times to study the effects of foliar-applied Zn, B, and Fe on grain yield and grain concentrations of micronutrients. Field experiments were undertaken in clay loam soil (Aeric Haplaquept) in eastern India during the winter seasons of 2018–2019 and 2019–2020, to cultivate rainfed lentil with residual moisture. Lentil crop was sown on two different sowing dates (in November and December) to expose one of the crops to higher temperature and moisture stress. Foliar spray of zinc (Zn 0.5%), boron (B 0.2%), and iron (Fe 0.5%) was applied either individually or in combination at the preflowering and pod development stage. These three micronutrients are essential humans. They have also been reported to alleviate plant stress. Our study reported that foliar spray of micronutrients twice during lentil growth stages can fortify seeds with required nutrients and also alleviate stress in late-sown conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Athar T, Khan MK, Pandey A, Yilmaz FG, Hamurcu M, Hakki EE, Gezgin S (2020) Biofortification and the involved modern approaches. J Elem 25:717–731

    Google Scholar 

  • Baethgen WE, Alley MM (1989) A manual colorimetric procedure for measuring ammonium nitrogen in soil and plant Kjeldahl digests. Commun Soil Sci Plant Anal 20:961–969

    CAS  Google Scholar 

  • Barik T, Rout D (1990) Effect of foliar spray of commercial micronutrient mixtures on growth, yield and quality of urd bean. Legum Res 13:50–62

    Google Scholar 

  • Beard JL (2001) Iron biology in immune function, muscle metabolism and neuronal functioning. J Nutr 131(2):568S–580S

    CAS  PubMed  Google Scholar 

  • Begcy K, Walia H (2015) Drought stress delays endosperm development and misregulates genes associated with cytoskeleton organization and grain quality proteins in developing wheat seeds. Plant Sci 240:109–111

    CAS  PubMed  Google Scholar 

  • Behboudian MH, Ma Q, Turner NC, Palta JA (2001) Reactions of chickpea to water stress: Yield and seed composition. J Sci Food Agric 81:1288–1291

    CAS  Google Scholar 

  • Bhatnagar MP, Bhatnagar-Mathur SD, Reddy V, Anjaiah Sharma KK (2011) Crop biofortification through genetic engineering: present status and future directions. nstitute of Biotechnology, Acharya NG Ranga Agricultural University, Hyderabad

    Google Scholar 

  • Bhowmik D, Chiranjib KP, Kumar S (2010) A potential medicinal importance of zinc in human health and chronic. Int J Pharm 1:5–11

    Google Scholar 

  • Blake GR (1965) Bulk density in methods of soil analysis. Agronomy 9(11):374–390

    Google Scholar 

  • Bouis HE, Saltzman A (2017) Improving nutrition through biofortifcation: a review of evidence from HarvestPlus, 2003 through 2016. Glob Food Sec 12:49–58. https://doi.org/10.1016/j.gfs.2017.01.009

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouyoucos GJ (1962) Hydrometer method improved for making particle size analyses of soils. Agronomy 54:464–465

    Google Scholar 

  • Braga NR, Vieira C (1998) Efeito da inoculação com Bradyrhizobium sp., nitrogênio e micronutrientes no rendimento do grão-de-bico. Bragantia 57(2):349–353

    CAS  Google Scholar 

  • Briat JF, Fobis-Loisy NI, Grignon S, Lobréaux N, Pascal G, Savino S, Thoiron N, von Wirén Wuytswinkel O (1995) Cellular and molecular aspects of iron metabolism in plants. Biol Cell 84:69–81

    CAS  Google Scholar 

  • Broadly MR, White PJ, Hamno JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702

    Google Scholar 

  • Brown KH, Peerson JM, Rivera J, Allen LH (2002) Effect of supplemental zinc on the growth and serum zinc concentrations of prepubertal children: A meta-analysis of randomized controlled trials. Am J Clin Nutr 75(6):1062–1071

    CAS  PubMed  Google Scholar 

  • Dell B, Huang L (1997) Physiological response of plants to low boron. Plant Soil 193(1–2):103–120

    CAS  Google Scholar 

  • Dordas C, Apostolides GE, Goundra O (2007) Boron application affects seed yield and seed quality of sugar beets. J Agric Sci 145:377–384

    CAS  Google Scholar 

  • Failla ML (2003) Trace elements and host defense: Recent advances and continuing challenges. J Nutr 133(5):1443S–1447S

    CAS  PubMed  Google Scholar 

  • FAO IFAD WFP (2015) The state of food insecurity in the world 2015. FAO, Rome

    Google Scholar 

  • Food and Agriculture Organization (FAO) (2018) Food, Organization Corporate Statistical Database A http://faostat.fao.org/. Accessed 15 May 2022

  • Ghanbari AA, Shakiba MR, Toorchi M, Choukan R (2013b) Nitrogen changes in the leaves and accumulation of some minerals in the seeds of red, white and chitti beans (Phaseolus vulgaris) under water deficit conditions. Aust J Crop Sci 7:706–712

    CAS  Google Scholar 

  • Ghanbari AA, Mousapour Gorgi A, Mousavi SH, Rao IM (2013a) Effects of water stress on leaves and seeds of bean (Phaseolus vulgaris L.). Turk J Field 181:73–77

    Google Scholar 

  • Gilbert C, Foster A (2001) Childhood blindness in the context of VISION 2020: the right to sight. Bull World Health Organ 79:227–232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez KA, Gomez AA (1984) Statistical procedures for agricultural research. John Willey and Sons, New York, p 180

    Google Scholar 

  • Gomez-Coronado F, Poblaciones MJ, Almeida AS, Cakmak I (2016) Zinc (Zn) concentration of bread wheat grown under Mediterranean conditions as afected by genotype and soil/foliar Zn application. Plant Soil 401:331–346

    CAS  Google Scholar 

  • Hossain MB, Kumar TN, Ahmed S (2001) Effect of zinc, boron and molybdenum application on the yield and nutrient uptake by BRRI Dhan 30. Online J Biol Sci 1:698–700

    Google Scholar 

  • Huang S, Wang P, Yamaji N, Ma JF (2020) Plant nutrition for human nutrition: hints from rice research and future perspectives. Mol Plant 13:825–835

    CAS  PubMed  Google Scholar 

  • Jackson ML (1963) Soil chemical analysis. Prentice Hall, New Delhi

    Google Scholar 

  • Jena J, Maitra S, Hossain A, Pramanick B, Gitari HI, Praharaj S, Shankar T, Palai JB, Rathore A, Mandal TK, Jatav HS (2022) Role of Legumes in Cropping System for Soil Ecosystem Improvement. In: Jatav HS, Rajput VD (Eds). Ecosystem Services: Types, Management and Benefits. Nova Science Publishers, Inc. 415 Oser Avenue, Suite N Hauppauge, NY, 11788 USA. https://doi.org/10.52305/PFZA6988.

  • John MK, Chuah HH, Neufeld JH (1975) Application of improved azomethine‑H method to the determination of boron in soils and plants. Anal Lett 8(8):559–568

    CAS  Google Scholar 

  • Kumar SA, Choudhary AK, Rana KA, Sarker A, Singh M (2018) Bio-fortification potential of global wild annual lentil core collection. PLoS ONE 13:e191122

    PubMed  PubMed Central  Google Scholar 

  • Kumari VV, Banerjee P, Verma VC, Sukumaran S, Chandran MAS, Gopinath KA, Venkatesh G, Yadav SK, Singh VK, Awasthi NK (2022) Plant nutrition: an effective way to alleviate abiotic stress in agricultural crops. Int J Mol Sci 23(15):8519

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lawson PG, Daum D, Czaudema RH, Meuser H, Harling JW (2015) Soil versus foliar iodine fertilization as a biofortification strategy for field-grown vegetables. Front Plant Sci 6:450

    PubMed  PubMed Central  Google Scholar 

  • Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J 42(3):421–428

    CAS  Google Scholar 

  • Lohse G (1982) Microanalytical azomethine‑H method for boron determination in plant tissue, Communications in Soil Science and Plant Analysis, 13(2):127–134. https://doi.org/10.1080/00103628209367251

  • Nasir M, Khalatbari M, Farahani HM (2011) Zn-foliar application influence on quality and quality features in Phaseolus vulgaris under different levels of N and K fertilizers. Adv Environ Biol 5:839–846

    Google Scholar 

  • National Institutes of Health (2019) Iron: fact sheet for consumers. https://ods.od.nih.gov/pdf/factsheets/Iron-Consumer.pdf. Accessed 18 June 2022

  • Nielsen FH, Eckhert CD (2020) Boron. Adv Nutr 1(2):461–462

    Google Scholar 

  • Niyigaba E, Twizerimana A, Mugenzi I, Ngnadong WA, Ye YP, Wu BM, Hai JB (2019) Winter wheat grain quality, zinc and iron concentration afected by a combined foliar spray of zinc and iron fertilizers. Agronomy 9:250

    CAS  Google Scholar 

  • Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) In Estimation of available phosphorus in soils by extraction with sodium bicarbonate (USDA Circular 1939). Washington, DC, US Government Printing Office

    Google Scholar 

  • Palai JB, Jena J, Maitra S (2019) Prospects of underutilized food legumes in sustaining pulse needs in India—A review. Crop Res 54(3, 4):82–88

    Google Scholar 

  • Praharaj S, Skalicky M, Maitra S, Bhadra P, Shankar T, Brestic M, Hejnak V, Vachova P, Hossain A (2021) Zinc biofortifcation in food crops could alleviate the zinc malnutrition in human health. Molecules 26:3509

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad AS (2007) Zinc: mechanisms of host defense. J Nutr 137:1345–1349

    CAS  PubMed  Google Scholar 

  • Purcell LC, King CA (1996) Drought and nitrogen source effects on nitrogen nutrition, seed growth, and yield in soybean. J Plant Nutr 19:969–993

    CAS  Google Scholar 

  • Redden RJ, Hatfield JL, Vara Prasad P, Ebert AW, Yadav SS, O’Leary GJ (2014) Temperature, climate change, and global food security. Temp Plant Dev 8:181–202

    Google Scholar 

  • Rietra RP, Heinen M, Dimpka C, Bindraban PS (2015) Effects of nutrient antagonism and synergism on fertilizer use effciency. In: VFRC Report 2015/5. Virtual Fertilizer Research Centre, Washington, DC., p 47

    Google Scholar 

  • Rivera-Martin A, Broadley MR, Poblaciones MJ (2020) Soil and foliar zinc biofortifcation of broccolini: efects on plant growth and mineral accumulation. Crop Pasture Sci 71:484–490

    CAS  Google Scholar 

  • Rosolem CA, Caires EF (1998) Yield and nitrogen uptake of peanuts as affected by lime, cobalt and molybdenum. J Plant Nutr 21:827–835

    CAS  Google Scholar 

  • Rout GR, Sahoo S (2015) Role of iron in plant growth and metabolism. Rev Agril Sci 3:1–24

    Google Scholar 

  • Sarker SK, Chowdhury MAH, Zakir HM (2002) Sulphur and boron fertilization on yield quality and nutrient uptake by Bangladesh Soybean‑4. Online J Biol Sci 2:729–733

    Google Scholar 

  • Schroeder W, Kay LM, Mills RS (1990) Spectrophotometric analysis of amino acids using ninhydrin chemical reaction. Anal Chem 22:760–760

    Google Scholar 

  • Schuler M, Bauer P (2012) Strategies for iron biofortification of crop plants. http://cdn.intechopen.com/pdfs/35868/InTech_Strategies_for_iron_biofortification_of_crop_plants.pdf. Accessed 26th June 2022

  • Sehgal AK, Sita K, Bhandari KS, Kumar SJ, Kumar JP, Vara Prasad Siddique KHM, Nayyar H (2019) Influence of drought and heat stress, applied independently or in combination during seed development, on qualitative and quantitative aspects of seeds of lentil (Lens culinaris Medikus) genotypes, differing in drought sensitivity. Plant Cell Environ 42:198–211

    CAS  PubMed  Google Scholar 

  • Singh MK, Prasad SK (2014) Agronomic aspects of zinc biofortification in rice (Oryza sativa L.). Proc Natl Acad Sci India Sect B Biol Sci 84(3):613–623

    CAS  Google Scholar 

  • Stein AJ, Meenakshi JV, Qaim M, Nestel P, Sachdev HPS, Bhutta ZA (2005) Technical monograph 4. In: Analysing the health benefits of biofortified staple crops by means of the disability-adjusted life years approach: A handbook focusing on iron, zinc and vitamin A. Harvest Plus, Washington

    Google Scholar 

  • Subbiah B, Asija GL (1956) A rapid procedure for the estimation of available nitrogen in soils. Curr Sci 25:259–260

    CAS  Google Scholar 

  • Thavarajah D, Thavarajah P, Wejesuriya A, Rutzke M, Glahn RP, Combs F Jr et al (2011) The potential of lentil (Lens culinaris L.) as a whole food for increased selenium, iron, and zinc intake: preliminary results from a three-year study. Euphytica 180:123–128

    CAS  Google Scholar 

  • Triboï EP, Martre P, Triboï-Blondel AM (2003) Environmentally-induced changes of protein composition for developing grains of wheat are related to changes in total protein content. J Exp Bot 54:1731–1742

    PubMed  Google Scholar 

  • Umar KJ (2010) Nutritional, toxicological and preliminary phytochemical analysis of some wild leafy vegetables. Ph.D. Thesis, Department of Chemistry, Usmanu Danfodiyo University Sokoto, Nigeria

  • Valenciano JB, Boto JA, Marcelo V (2011) Chickpea (Cicer arietinum L.) response to zinc, boron and molybdenum application under field conditions. N Z J Crop Hortic Sci 39:217–229

    CAS  Google Scholar 

  • Venugopalan VK, Roy A, Vijayan R, Banerjee P, Verma VC, Nalia A, Pramanik M, Mukherjee B, Ghosh A, Reja M, Chandran MAS (2021a) Drought and heat stress in cool-season food legumes in sub-tropical regions: consequences, adaptation, and mitigation strategies. Plants 10(6):1038

    Google Scholar 

  • Venugopalan VK, Nath R, Sengupta K, Nalia A, Banerjee S, Chandran MAS, Ibrahimova U, Dessoky ES, Attia AO, Hassan MM, Hossain A (2021b) The response of lentil (Lens culinaris Medik.) to soil moisture and heat stress under different dates of sowing and foliar application of micronutrients. Front Plant Sci 12:679469

    PubMed  PubMed Central  Google Scholar 

  • Venugopalan V, Nath R, Sengupta K, Pal AK, Banerjee S, Banerjee P, Chandran MAS, Roy S, Sharma L, Hossain A, Siddique KHM (2022) Foliar spray of micronutrients alleviates heat and moisture stress in Lentil (Lens culinaris) grown under rainfed field condition. Front Plant Sci 13:847743

    PubMed  PubMed Central  Google Scholar 

  • Walkley A, Black CA (1934) Estimation of organic carbon by the chromic acid titration method. Soil Sci 47:29–38

    Google Scholar 

  • Waraich ER, Ahmad R, Halim A, Aziz T (2012) Alleviation of temperature stress by nutrient management in crop plants: A Review. J Soil Sci Plant Nutr 12:221–244

    Google Scholar 

  • Warncke BAJD (1988) Recommended cation tests and measures of cation exchange capacity. In: Dahnke WC (ed) Recommended chemical soil tests procedures for the North central region. Bulletin No. 499. North Dakota Agricultural Experiment Station, Fargo, pp 15–16 (Revised)

    Google Scholar 

  • Wessels I, Rink L (2020) Micronutrients in autoimmune diseases: possible therapeutic benefits of zinc and vitamin D. J Nutr Biochem 77:108240

    CAS  PubMed  Google Scholar 

  • Yadav S, Rizvi A, Manohar M, Verma A, Shrestha R, Chen C et al (2007) Lentil growers and production systems around the world. In: Yadav S (ed) Lentil: an ancient crop for modern times. Springer, Dordrecht, pp 415–442

    Google Scholar 

  • Yang ML, Shi FS, Xu J, Lu W, Wang YH (2009) Effects of B, Mo, Zn and their interactions on seed yield of rapeseed. Pedosphere 19:53–59

    CAS  Google Scholar 

  • Yanni YG (1992) Performance of chickpea, lentil and lupin nodulated with indigenous or inoculated rhizobia micropartners under nitrogen, boron, cobalt and molybdenum fertilization schedules. World J Microbiol Biotechnol 8(6):607–613

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The corresponding author extends her thanks to the director of ICAR-CRIDA for granting PhD study leave.

Funding

This work is funded by ICARDA South Asia

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venugopalan Visha Kumari.

Ethics declarations

Conflict of interest

V. Visha Kumari, P. Banerjee, R. Nath, K. Sengupta, S. Chandran M.A., V.G. Veni, and A. Hossain declare that they have no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Visha Kumari, V., Banerjee, P., Nath, R. et al. Foliar Application of Zinc, Boron, and Iron Improved Seed Nutrients, Protein Content, and Yield in Late-Sown Stressed Lentil (Lens culinaris Medikus) Crop. Gesunde Pflanzen 75, 1133–1141 (2023). https://doi.org/10.1007/s10343-022-00776-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-022-00776-2

Keywords

Navigation